Numerical methods for Bogoliubov-de Gennes excitations of Bose-Einstein condensates

Abstract In this paper, we study the analytical properties and the numerical methods for the Bogoliubov-de Gennes equations (BdGEs) describing the elementary excitation of Bose-Einstein condensates around the mean field ground state, which is governed by the Gross-Pitaevskii equation (GPE). Derived analytical properties of BdGEs can serve as benchmark tests for numerical algorithms and three numerical methods are proposed to solve the BdGEs, including sine-spectral method, central finite difference method and compact finite difference method. Extensive numerical tests are provided to validate the algorithms and confirm that the sine-spectral method has spectral accuracy in spatial discretization, while the central finite difference method and the compact finite difference method are second-order and fourth-order accurate, respectively. Finally, sine-spectral method is extended to study elementary excitations under the optical lattice potential and solve the BdGEs around the first excited states of the GPE. The numerical experiments demonstrate the efficiency and accuracy of the proposed methods for solving BdGEs.

[1]  Panayotis G. Kevrekidis,et al.  The Defocusing Nonlinear Schrödinger Equation - From Dark Solitons to Vortices and Vortex Rings , 2015 .

[2]  Stringari Collective Excitations of a Trapped Bose-Condensed Gas. , 1996, Physical review letters.

[3]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[4]  Sandro Stringari,et al.  Theory of ultracold atomic Fermi gases , 2007, 0706.3360.

[5]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[6]  P. Engels,et al.  Vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates , 2016, 1606.05607.

[7]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[8]  M. Machida,et al.  Finite element method for Bogoliubov-de Gennes equation: application to nano-structure superconductor , 2004 .

[9]  Ren-Cang Li,et al.  Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods , 2016 .

[10]  Yousef Saad,et al.  Numerical Methods for Electronic Structure Calculations of Materials , 2010, SIAM Rev..

[11]  D. Lu,et al.  Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. , 2010, The Journal of chemical physics.

[12]  M. Gruning,et al.  Implementation and testing of Lanczos-based algorithms for Random-Phase Approximation eigenproblems , 2011, 1102.3909.

[13]  Tingchun Wang,et al.  Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schrödinger equations , 2011, J. Comput. Appl. Math..

[14]  Alexander L. Fetter Rotating trapped Bose-Einstein condensates , 2009 .

[15]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[16]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[17]  Cornell,et al.  Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas. , 1996, Physical review letters.

[18]  Dobson Harmonic-potential theorem: Implications for approximate many-body theories. , 1994, Physical review letters.

[19]  Clark,et al.  Collective Excitations of Atomic Bose-Einstein Condensates. , 1996, Physical review letters.

[20]  Y. Castin Course 1: Bose-Einstein Condensates in Atomic Gases: Simple Theoretical Results , 2001, cond-mat/0105058.

[21]  Bambi Hu,et al.  Analytical solutions of the Bogoliubov–de Gennes equations for excitations of a trapped Bose-Einstein-condensed gas , 2004 .

[22]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[23]  Zhi-Zhong Sun,et al.  Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..

[24]  Zhaojun Bai,et al.  Minimization Principles for the Linear Response Eigenvalue Problem I: Theory , 2012, SIAM J. Matrix Anal. Appl..

[25]  P. B. Blakie,et al.  Collective Excitations of Self-Bound Droplets of a Dipolar Quantum Fluid. , 2017, Physical review letters.

[26]  P. Kevrekidis,et al.  Distribution of eigenfrequencies for oscillations of the ground state in the Thomas-Fermi limit , 2009, 0911.5313.

[27]  Zhaojun Bai,et al.  Minimization Principles for the Linear Response Eigenvalue Problem II: Computation , 2013, SIAM J. Matrix Anal. Appl..

[28]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[29]  Shusen Xie,et al.  Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation , 2009 .

[30]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[31]  J. Olsen,et al.  Solution of the large matrix equations which occur in response theory , 1988 .

[32]  Elliott H. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.