CNTFET Modeling and Reconfigurable Logic-Circuit Design

This paper examines aspects of design technology required to explore advanced logic-circuit design using carbon nanotube field-effect transistor (CNTFET) devices. An overview of current types of CNTFETs is given and highlights the salient characteristics of each. Compact modeling issues are addressed and new models are proposed implementing: 1) a physics-based calculation of energy conduction sub-band minima to allow a realistic analysis of the impact of CNT helicity and radius on the dc characteristics; 2) descriptions of ambipolar behavior in Schottky-barrier CNTFETs and ambivalence in double-gate CNTFETs (DG-CNTFETs). Using the available models, the influence of the parameters on the device characteristics were simulated and analyzed. The exploitation of properties specific to CNTFETs to build functions inaccessible to MOSFETs is also described, particularly with respect to the use of DG-CNTFETs in fine-grain reconfigurable logic.

[1]  Mark S. Lundstrom,et al.  A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.

[2]  Joachim Knoch,et al.  Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts , 2005 .

[3]  T. Zimmer,et al.  Analysis of CNTFET physical compact model , 2006, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006..

[4]  M. Lundstrom,et al.  Assessment of high-frequency performance potential of carbon nanotube transistors , 2005, IEEE Transactions on Nanotechnology.

[5]  J. Appenzeller,et al.  Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design , 2005, IEEE Transactions on Electron Devices.

[6]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[7]  Phaedon Avouris,et al.  Carbon nanotube field-effect transistors and logic circuits , 2002, DAC '02.

[8]  H. Wong,et al.  Schottky-Barrier Carbon Nanotube Field-Effect Transistor Modeling , 2007, IEEE Transactions on Electron Devices.

[9]  K. Roy,et al.  Carbon-nanotube-based voltage-mode multiple-valued logic design , 2005, IEEE Transactions on Nanotechnology.

[10]  Kaushik Roy,et al.  A circuit-compatible model of ballistic carbon nanotube field-effect transistors , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  S. Wind,et al.  Carbon nanotube electronics , 2003, Digest. International Electron Devices Meeting,.

[12]  Jing Guo,et al.  Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors , 2002, Digest. International Electron Devices Meeting,.

[13]  G. Dambrine,et al.  An 8-GHz f/sub t/ carbon nanotube field-effect transistor for gigahertz range applications , 2006, IEEE Electron Device Letters.

[14]  Jean-Baptiste Kammerer,et al.  Compact Modeling and Applications of CNTFETs for Analog and Digital Circuit Design , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[15]  C. Lallement,et al.  Design-oriented compact models for CNTFETs , 2006, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006..

[16]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[17]  S. Galdin-Retailleau,et al.  Electron-phonon scattering and ballistic behavior in semiconducting carbon nanotubes , 2005 .

[18]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[19]  S. Wind,et al.  Lateral scaling in carbon-nanotube field-effect transistors. , 2003, Physical review letters.

[20]  W. Hoenlein,et al.  Carbon nanotubes for microelectronics: status and future prospects , 2003 .

[21]  H. Dai,et al.  High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. , 2004, Nano letters.

[22]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[23]  J. Knoch,et al.  High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.

[24]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[25]  Luc Henrard,et al.  Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models , 2004 .

[26]  K. Balasubramanian,et al.  Exclusive-OR gate with a single carbon nanotube , 2006 .

[27]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .