Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of Markov chain Monte Carlo) and are compounded by high dimensionality of the posterior. We address these challenges by introducing truncated Karhunen-Loeve expansions, based on the prior distribution, to efficiently parameterize the unknown field and to specify a stochastic forward problem whose solution captures that of the deterministic forward model over the support of the prior. We seek a solution of this problem using Galerkin projection on a polynomial chaos basis, and use the solution to construct a reduced-dimensionality surrogate posterior density that is inexpensive to evaluate. We demonstrate the formulation on a transient diffusion equation with prescribed source terms, inferring the spatially-varying diffusivity of the medium from limited and noisy data.

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[3]  E. Somersalo,et al.  Inverse problems with structural prior information , 1999 .

[4]  Panos G. Georgopoulos,et al.  Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method , 2003 .

[5]  P. Stark Inverse problems as statistics , 2002 .

[6]  Alan Bain Stochastic Calculus , 2007 .

[7]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[8]  Mrinal K. Sen,et al.  An Efficient Stochastic Bayesian Approach to Optimal Parameter and Uncertainty Estimation for Climate Model Predictions , 2004 .

[9]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[10]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[11]  Wuan Luo Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations , 2006 .

[12]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[13]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[14]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[15]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[16]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[17]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[18]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[19]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[20]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[21]  M. Loève Probability Theory II , 1978 .

[22]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[23]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[24]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[25]  Mike West,et al.  Markov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media , 2002, Technometrics.

[26]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[27]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[28]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[29]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[30]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[31]  Jeffrey L. Krolik,et al.  A generalized Karhunen-Loeve basis for efficient estimation of tropospheric refractivity using radar clutter , 2004, IEEE Transactions on Signal Processing.

[32]  R. Ghanem The Nonlinear Gaussian Spectrum of Log-Normal Stochastic Processes and Variables , 1999 .

[33]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[34]  David J. C. MacKay,et al.  Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.

[35]  Habib N. Najm,et al.  Natural Convection in a Closed Cavity under Stochastic Non-Boussinesq Conditions , 2005, SIAM J. Sci. Comput..

[36]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[37]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[38]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[39]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[40]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[41]  J. Scales,et al.  Resolution of seismic waveform inversion: Bayes versus Occam , 1997 .

[42]  G. Wahba Spline models for observational data , 1990 .

[43]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[44]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[45]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[46]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[47]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[48]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[49]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[50]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[51]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[52]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[53]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[54]  O. L. Maître,et al.  Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .

[55]  Shizuo Kakutani,et al.  Spectral Analysis of Stationary Gaussian Processes , 1961 .

[56]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[57]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[58]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[59]  C. J. Stone,et al.  Introduction to Stochastic Processes , 1972 .

[60]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[61]  Ralf Möller,et al.  A Self-Stabilizing Learning Rule for Minor Component Analysis , 2004, Int. J. Neural Syst..

[62]  Willem Hundsdorfer,et al.  RKC time-stepping for advection-diffusion-reaction problems , 2004 .

[63]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[64]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[65]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[66]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[67]  N. Wiener The Homogeneous Chaos , 1938 .

[68]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[69]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[70]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[71]  A. Mohammad-Djafari Bayesian inference for inverse problems , 2001, physics/0110093.

[72]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[73]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[74]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[75]  Daniela Calvetti,et al.  A Gaussian hypermodel to recover blocky objects , 2007 .

[76]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[77]  Ali Mohammad-Djafari Bayesian inference and maximum entropy methods in science and engineering : 26th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Paris, France, 8-13 July 2006 , 2006 .

[78]  David Higdon,et al.  Flexible Gaussian Processes via Convolution , 2002 .

[79]  Wei Li,et al.  Efficient geostatistical inverse methods for structured and unstructured grids , 2006 .

[80]  D. Oliver,et al.  Markov chain Monte Carlo methods for conditioning a permeability field to pressure data , 1997 .

[81]  C. Skordis,et al.  Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation , 2005 .

[82]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[83]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[84]  Nicholas Zabaras,et al.  A markov random field model of contamination source identification in porous media flow , 2006 .

[85]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[86]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[87]  Peter Orbanz Probability Theory II , 2011 .

[88]  Luis Tenorio,et al.  Statistical Regularization of Inverse Problems , 2001, SIAM Rev..