Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs
暂无分享,去创建一个
[1] H. Rauhut,et al. Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.
[2] R. DeVore,et al. ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .
[3] E. Kokiopoulou,et al. Optimal similarity registration of volumetric images , 2011, Computer Vision and Pattern Recognition.
[4] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[5] J. Rossmann,et al. Elliptic Equations in Polyhedral Domains , 2010 .
[6] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[7] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[8] G. Prato. An Introduction to Infinite-Dimensional Analysis , 2006 .
[9] Seán Dineen,et al. Complex Analysis on Infinite Dimensional Spaces , 1999 .
[10] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[11] Winfried Sickel,et al. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.
[12] Michel Hervé,et al. Analyticity in Infinite Dimensional Spaces , 1989 .
[13] D. Adams. A sharp inequality of J. Moser for higher order derivatives , 1988 .
[14] Angewandte Mathematik. Analytic regularity and nonlinear approximation of a class of parametric , 2011 .
[15] Haris Papasaikaa,et al. Sparsity-seeking fusion of digital elevation models , 2011 .
[16] Christoph Schwab,et al. Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation ! , 2010 .
[17] Suheil A. Khuri,et al. A new approach to Bratu's problem , 2004, Appl. Math. Comput..
[18] G. Laumon,et al. A Series of Modern Surveys in Mathematics , 2000 .
[19] T. J. Rivlin. The Chebyshev polynomials , 1974 .