Abstract Hydrogen has been used as chemicals and fuels in industries for last decades. Recently, it has become attractive as one of promising green energy candidates in the era of facing with two critical energy issues such as accelerating deterioration of global environment (e.g. carbon dioxide emissions) as well as concerns on the depletion of limited fossil sources. A number of hydrogen fueling stations are under construction to fuel hydrogen-driven vehicles. It would be indispensable to ensure the safety of hydrogen station equipment and operating procedure in order to prevent any leak and explosions of hydrogen: safe design of facilities at hydrogen fueling stations e.g. pressurized hydrogen leak from storage tanks. Several researches have centered on the behaviors of hydrogen ejecting out of a set of holes of pressurized storage tanks or pipes. This work focuses on the 3D simulation of hydrogen leak scenario cases at a hydrogen fueling station, given conditions of a set of pressures, 100, 200, 300, 400 bar and a set of hydrogen ejecting hole sizes, 0.5, 0.7, 1.0 mm, using a commercial computational fluid dynamics (CFD) tool, FLACS. The simulation is based on real 3D geometrical configuration of a hydrogen fueling station that is being commercially operated in Korea. The simulation results are validated with hydrogen jet experimental data to examine the diffusion behavior of leak hydrogen jet stream. Finally, a set of marginal safe configurations of fueling facility system are presented, together with an analysis of distribution characteristics of blast pressure, directionality of explosion. This work can contribute to marginal hydrogen safety design for hydrogen fueling stations and a foundation on establishing a safety distance standard required to protect from hydrogen explosion in Korea being in the absence of such an official requirement.
[1]
Xianxin Liu,et al.
Numerical simulation of high-pressure hydrogen jet flames during bonfire test
,
2012
.
[2]
Atsumi Miyake,et al.
Risk assessment for liquid hydrogen fueling stations
,
2009
.
[3]
Young Hee Lee,et al.
Development of Korean hydrogen fueling station codes through risk analysis
,
2011
.
[4]
Junghwan Kim,et al.
Development of a web-based 3D virtual reality program for hydrogen station
,
2010
.
[5]
William G. Houf,et al.
Analytical and experimental investigation of small-scale unintended releases of hydrogen
,
2008
.
[6]
G. K. Lee,et al.
Improved radiative heat transfer from hydrogen flames
,
1991
.
[7]
In-Seuck Jeung,et al.
Numerical study of spontaneous ignition of pressurized hydrogen released by the failure of a rupture disk into a tube
,
2009
.
[8]
Olav R. Hansen,et al.
Consequence analysis—Using a CFD model for industrial sites
,
2005
.
[9]
William G. Houf,et al.
Investigation of small-scale unintended releases of hydrogen : momentum-dominated regime
,
2008
.