Extremely large magnetoresistance in an unfilled skutterudite quadratic contact point semimetal CoP3

Extremely large magnetoresistance (EXMR) and high mobility are always desired for use in spintronic devices. Herein, we report the observation of EXMR and very large hole mobility reaching ∼ 2 × 104% (30 T) and ∼2 × 104 cm2 V−1 s−1, respectively, at 2 K in an unfilled skutterudite CoP3 crystal. The magnetotransport measurements unveil remarkable Shubnikov–de Haas quantum oscillations hosting nontrivial Berry phase induced by strong Zeeman splitting. First-principles calculations suggest band inversion between Co-dxy/yz and P-pz orbitals, which forms fourfold quadratic contact point at the Γ point above the Fermi level of ∼0.146 eV. The angle-resolved photoelectron spectroscopy measurements verify the calculated surface state. The results provide a quadratic contact point semimetal, which has potential applications in topological devices.

[1]  Jianpeng Liu,et al.  Magnetization tunable Weyl states in EuB6 , 2022, Physical Review B.

[2]  Jian-Tao Wang,et al.  Six- or four-fold band degeneration in CoAs3, RhAs3 and RhSb3 topological semimetals. , 2021, Physical Chemistry, Chemical Physics - PCCP.

[3]  Benjamin G. Janesko Replacing hybrid density functional theory: motivation and recent advances. , 2021, Chemical Society reviews.

[4]  Haijun Zhang,et al.  Magnetism-induced ideal Weyl state in bulk van der Waals crystal MnSb2Te4 , 2021 .

[5]  D. Shen,et al.  High-resolution ARPES endstation for in situ electronic structure investigations at SSRF , 2021, Nuclear Science and Techniques.

[6]  L. Pi,et al.  Multiple Weyl fermions in the noncentrosymmetric semimetal LaAlSi , 2021, 2102.05558.

[7]  D. Shen,et al.  Multiple Magnetic Topological Phases in Bulk van der Waals Crystal MnSb_{4}Te_{7}. , 2021, Physical review letters.

[8]  Bryan M. Wong,et al.  Improved band gaps and structural properties from Wannier–Fermi–Löwdin self-interaction corrections for periodic systems , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Shuo Niu,et al.  A review of CoSb3-based skutterudite thermoelectric materials , 2020, Journal of Advanced Ceramics.

[10]  Jiuyang Zhang,et al.  Quantum oscillations and nontrivial topological state in a compensated semimetal TaP2 , 2019, Physical Review B.

[11]  Shengyuan A. Yang,et al.  Quadratic contact point semimetal: Theory and material realization , 2018, Physical Review B.

[12]  G. Gao,et al.  Fermi surface and carrier compensation of pyrite-type PtBi2 revealed by quantum oscillations , 2018, Physical Review B.

[13]  N. Ghimire,et al.  Origin of extremely large magnetoresistance in the semimetal YSb , 2018 .

[14]  Daniel S. Sanchez,et al.  Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi. , 2017, Physical review letters.

[15]  Jianlin Luo,et al.  Large negative magnetoresistance of a nearly Dirac material: Layered antimonide EuMnSb2 , 2017 .

[16]  G. P. Srivastava,et al.  Electron-phonon superconductivity in the filled skutterudites LaRu4P12, LaRu4As12, and LaPt4Ge12 , 2017 .

[17]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[18]  F. Balakirev,et al.  Fermi-surface topologies and low-temperature phases of the filled skutterudite compounds CeOs4Sb12 and NdOs4Sb12 , 2016, 1611.00318.

[19]  Wenshuai Gao,et al.  Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi_{2}. , 2016, Physical review letters.

[20]  L. Li,et al.  Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5 , 2016, Nature Communications.

[21]  X. Dai,et al.  Topological semimetals predicted from first-principles calculations , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Hong Lu,et al.  Large magnetoresistance in compensated semimetals TaAs 2 and NbAs 2 , 2016, 1601.06482.

[23]  R. Cava,et al.  Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.

[24]  W. Kwok,et al.  Origin of the turn-on temperature behavior in WTe2 , 2015, 1510.06976.

[25]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[26]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[27]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[28]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[29]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[30]  A. Burkov,et al.  Anomalous Hall effect in Weyl metals. , 2014, Physical review letters.

[31]  Evelyn Tang,et al.  Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators , 2014, Nature Physics.

[32]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[33]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[34]  A. Zyuzin,et al.  Topological response in Weyl semimetals and the chiral anomaly , 2012, 1206.1868.

[35]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[36]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[37]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[38]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[39]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[40]  Y. Kopelevich,et al.  Dirac and normal fermions in graphite and graphene: implications of the quantum Hall effect. , 2006, Physical review letters.

[41]  R. Jin,et al.  Anomalous Hall effect in three ferromagnetic compounds:EuFe4Sb12,Yb14MnSb11, andEu8Ga16Ge30 , 2006, cond-mat/0603410.

[42]  Y. Kopelevich,et al.  Phase analysis of quantum oscillations in graphite. , 2004, Physical review letters.

[43]  E. Bauer,et al.  Superconductivity and heavy fermion behavior in PrOs 4 Sb 12 , 2002 .

[44]  T. Champel,et al.  de Haas–van Alphen effect in two- and quasi-two-dimensional metals and superconductors , 2000, cond-mat/0006156.

[45]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[46]  V. Shields,et al.  Synthesis and thermoelectric properties of CoP(sub 3) , 2001 .

[47]  I. Lifshitz,et al.  On the Theory of the Shubnikov-De Haas Effect , 1958 .