Planning in-flight calibration for XRISM

The XRISM X-ray observatory will fly two advanced instruments, the Resolve high-resolution spectrometer and the Xtend wide-field imager. These instruments, particularly Resolve, pose calibration challenges due to the unprecedented combination of spectral resolution, spectral coverage, and effective area, combined with a need to characterize the imaging fidelity of the full instrument system to realize the mission’s ambitious science goals. We present the status of the XRISM in-flight calibration plan, building on lessons from Hitomi and other X-ray missions. We present a discussion of targets and observing strategies to address the needed calibration measurements, with a focus on developing methodologies to plan a thorough and flexible calibration campaign and provide insight on calibration systematic error. We also discuss observations that exploit Resolve’s spectral

[1]  Luc Dubbeldam,et al.  Calibration sources and filters of the soft x-ray spectrometer instrument on the Hitomi spacecraft , 2017 .

[2]  T. Weekes,et al.  Search for High-Energy Gamma Rays from an X-Ray-selected Blazar Sample , 2003 .

[3]  Matteo Guainazzi,et al.  Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi , 2017, 1712.05407.

[4]  Matteo Guainazzi,et al.  Status of x-ray imaging and spectroscopy mission (XRISM) , 2020, Astronomical Telescopes + Instrumentation.

[5]  S. Sugita,et al.  In-orbit performance of the soft X-ray imaging system aboard Hitomi (ASTRO-H) , 2017, 1709.08829.

[6]  Matteo Guainazzi,et al.  Search for thermal X-ray features from the Crab nebula with the Hitomi soft X-ray spectrometer , 2017, 1707.00054.

[7]  Matteo Guainazzi,et al.  Cross Spectral Calibration of Suzaku, XMM-Newton, and Chandra with PKS 2155-304 as an Activity of IACHEC , 2011 .

[8]  J. A. Nousek,et al.  X-Ray Imaging of the Seyfert 2 Galaxy Circinus with Chandra , 2000, astro-ph/0010355.

[9]  Matteo Guainazzi,et al.  Temperature Structure in the Perseus Cluster Core Observed with Hitomi , 2017, 1712.06612.

[10]  A. H. Rots,et al.  The X-ray Spectrum of the Plerionic System PSR B1509-58/MSH 15-52 , 1997 .

[11]  Yoshitaka Ishisaki,et al.  In-flight performance of pulse-processing system of the ASTRO-H/Hitomi soft x-ray spectrometer , 2018 .

[12]  Matteo Guainazzi,et al.  Glimpse of the highly obscured HMXB IGR J16318−4848 with Hitomi , 2017, 1711.07727.

[13]  Takashi Okajima,et al.  Constraining the Neutron Star Mass–Radius Relation and Dense Matter Equation of State with NICER. I. The Millisecond Pulsar X-Ray Data Set , 2019, The Astrophysical Journal.

[14]  Matteo Guainazzi,et al.  Defining High‐Energy Calibration Standards: IACHEC (International Astronomical Consortium for High‐Energy Calibration) , 2010 .

[15]  C. Gabriel,et al.  Calibration and in-orbit performance of the reflection grating spectrometer onboard XMM-Newton , 2014, 1410.5251.

[16]  Matteo Guainazzi,et al.  Hitomi (ASTRO-H) X-ray Astronomy Satellite , 2018 .

[17]  William W. Zhang,et al.  Lynx X-Ray Observatory: an overview , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.

[18]  Marshall W. Bautz,et al.  Suzaku Observations of Abell 1795: Cluster Emission to R200 , 2009 .

[19]  Ryo Iizuka,et al.  Detail plans and preparations for the science operations of the XRISM mission , 2020, Astronomical Telescopes + Instrumentation.

[20]  Hitomi Collaboration,et al.  Solar abundance ratios of the iron-peak elements in the Perseus cluster , 2017, Nature.

[21]  Yoshitomo Maeda,et al.  X-ray transmission measurements of the gate valve for the x-ray astronomy satellite XRISM , 2020, Astronomical Telescopes + Instrumentation.

[22]  George R. Ricker,et al.  The X-ray emission of 3C 273 observed with ASCA , 1994 .

[23]  Matteo Guainazzi,et al.  Hitomi X-ray studies of Giant Radio Pulses from the Crab pulsar. , 2017, Publications of the Astronomical Society of Japan. Nihon Tenmon Gakkai.

[24]  Kristin K. Madsen,et al.  NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5−0.9 , 2014, 1405.3239.

[25]  Matteo Guainazzi,et al.  The quiescent intracluster medium in the core of the Perseus cluster , 2016, Nature.

[26]  Regis P. Brekosky,et al.  Design, implementation, and performance of the Astro-H SXS calorimeter array and anticoincidence detector , 2018 .

[27]  Matteo Guainazzi,et al.  Hitomi Observation of Radio Galaxy NGC 1275: The First X-ray Microcalorimeter Spectroscopy of Fe-K{\alpha} Line Emission from an Active Galactic Nucleus , 2017, 1711.06289.

[28]  Joern Wilms,et al.  The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013 .

[29]  Matteo Guainazzi,et al.  Concept of the X-ray Astronomy Recovery Mission , 2018, Astronomical Telescopes + Instrumentation.

[30]  Matteo Guainazzi,et al.  Hitomi X-ray observation of the pulsar wind nebula G21.5−0.9 , 2018, 1802.05068.

[31]  Ryo Iizuka,et al.  The XRISM science data center: optimizing the scientific return from a unique x-ray observatory , 2020, Astronomical Telescopes + Instrumentation.

[32]  Matteo Guainazzi,et al.  On the in-flight calibration plans of modern x-ray observatories , 2015 .

[33]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[34]  Giorgio Matt,et al.  The circumnuclear X‐ray reflectors in NGC 1068 and the Circinus galaxy , 2000 .

[35]  Frank Haberl,et al.  SNR 1E 0102.2-7219 as an X-ray calibration standard in the 0.5−1.0 keV bandpass and its application to the CCD instruments aboard Chandra, Suzaku, Swift and XMM-Newton , 2016, 1607.03069.

[36]  Matteo Guainazzi,et al.  Hitomi observations of the LMC SNR N 132 D: Highly redshifted X-ray emission from iron ejecta , 2017, 1712.02365.

[37]  Tadayuki Takahashi,et al.  Time assignment system and its performance aboard the Hitomi satellite , 2017, 1712.01484.

[38]  J. W. den Herder,et al.  The interstellar oxygen-K absorption edge as observed by XMM-Newton - Separation of instrumental and interstellar components , 2003 .

[39]  E. V. Gotthelf,et al.  NuSTAR Hard X-Ray Observations of the Energetic Millisecond Pulsars PSR B1821-24, PSR B1937+21, and PSR J0218+4232 , 2017, 1704.02964.

[40]  Matteo Guainazzi,et al.  In-flight verification of the calibration and performance of the ASTRO-H (Hitomi) Soft X-Ray Spectrometer , 2016, Astronomical Telescopes + Instrumentation.

[41]  J. A. Gregory,et al.  X-Ray Imaging Spectrometer (XIS) on Board Suzaku , 2007 .

[42]  Gregory V. Brown,et al.  Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster , 2016, 1607.07420.

[43]  Paul P. Plucinsky,et al.  The complicated evolution of the ACIS contamination layer over the mission life of the Chandra X-ray Observatory , 2018, Astronomical Telescopes + Instrumentation.

[44]  Yoshitaka Ishisaki,et al.  Initial ground calibration of the Resolve detector system on XRISM , 2020, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray.

[45]  T. Mineo,et al.  X-ray observations of the Large Magellanic Cloud pulsar PSR B0540-69 and its pulsar wind nebula , 2008, 0806.3670.

[46]  Kazutaka Yamaoka,et al.  Soft x-ray imager (SXI) for Xtend onboard X-Ray Imaging and Spectroscopy Mission (XRISM) , 2020, Astronomical Telescopes + Instrumentation.

[47]  Matteo Guainazzi,et al.  Detection of polarized gamma-ray emission from the Crab nebula with the Hitomi Soft Gamma-ray Detector† , 2018, Publications of the Astronomical Society of Japan.

[48]  Matteo Guainazzi,et al.  Atmospheric gas dynamics in the Perseus cluster observed with Hitomi , 2017, 1711.00240.

[49]  Matteo Guainazzi,et al.  Measurements of resonant scattering in the Perseus Cluster core with Hitomi SXS , 2017, 1710.04648.