Combining Tree Partitioning, Precedence, Incomparability, and Degree Constraints, with an Application to Phylogenetic and Ordered-Path Problems

Combining Tree Partitioning, Precedence, Incomparability, and Degree Constraints, with an Application to Phylogenetic and Ordered-Path Problems

[1]  Jean-Charles Régin,et al.  Generalized Arc Consistency for Global Cardinality Constraint , 1996, AAAI/IAAI, Vol. 1.

[2]  Charles Semple,et al.  Supertree algorithms for ancestral divergence dates and nested taxa , 2004, Bioinform..

[3]  W. T. Tutte On Hamiltonian Circuits , 1946 .

[4]  M. Kennedy,et al.  SEABIRD SUPERTREES: COMBINING PARTIAL ESTIMATES OF PROCELLARIIFORM PHYLOGENY , 2002 .

[5]  Xavier Lorca,et al.  The tree Constraint , 2005, CPAIOR.

[6]  Kurt Mehlhorn,et al.  An efficient graph algorithm for dominance constraints , 2003, J. Algorithms.

[7]  Wu Wei,et al.  Supertree Construction with Constraint Programming , 2003, CP.

[8]  Charles Semple,et al.  Supertree Methods for Ancestral Divergence Dates and other Applications , 2004 .

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  김동규,et al.  [서평]「Algorithms on Strings, Trees, and Sequences」 , 2000 .

[11]  Václav Koubek,et al.  A Reduct-and-Closure Algorithm for Graphs , 1979, MFCS.

[12]  Yves Deville,et al.  Using Dominators for Solving Constrained Path Problems , 2006, PADL.

[13]  Sven Thiel Efficient algorithms for constraint propagation and for processing tree descriptions , 2004 .

[14]  Luis Quesada,et al.  Solving constrained graph problems using reachability constraints based on transitive closure and dominators / Résolution de problèmes de graphes contraints à l'aide de contraintes d'atteignabilité basées sur la clôture transitive et les dominateurs , 2007 .

[15]  Roderic D. M. Page,et al.  Modified Mincut Supertrees , 2002, WABI.

[16]  Eric Bourreau,et al.  Conception d'une contrainte globale de chemin , 2004 .

[17]  Manuel Bodirsky,et al.  Pure Dominance Constraints , 2002, STACS.

[18]  Alfred V. Aho,et al.  The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..

[19]  Manuel Bodirsky,et al.  Determining the consistency of partial tree descriptions , 2007, Artif. Intell..

[20]  Alfred V. Aho,et al.  Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions , 1981, SIAM J. Comput..

[21]  Eric Bourreau,et al.  Traitement de contraintes sur les graphes en programmation par contraintes , 1999 .

[22]  Nicholas C. Wormald,et al.  Reconstruction of Rooted Trees From Subtrees , 1996, Discret. Appl. Math..

[23]  J. L. Gittleman,et al.  The (Super)Tree of Life: Procedures, Problems, and Prospects , 2002 .

[24]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[25]  Rolf Backofen,et al.  A first-order axiomatization of the theory of finite trees , 1995, J. Log. Lang. Inf..