Spatial structuring of light for undergraduate laboratory

In recent times, spatial light modulators have become a common tool in optics laboratories as well as industrial environment to shape the spatial structure of a beam. Although these devices are often easy to use, they usually come at a high cost such that they are far from being implemented in a lot of undergraduate laboratories. However, over the last years, the progress in developing more cost-effective projectors has led to affordable spatial light modulators in the form of so-called Digital Micromirror Devices (DMD). This reduction in price, as well as their simple usage, make such devices increasingly suitable for undergraduate laboratories to demonstrate optical effects and the shaping of light fields. Here, we show one of the most cost-effective ways to make a DMD available, namely turning a projector evaluation module into a computer-controlled spatial light modulator. We explain the underlying functioning and how this low-cost spatial light modulator can be used in undergraduate laboratories. We further characterize the efficiency of the device for the most commonly used laser wavelengths and demonstrate various exemplary optics experiments suitable for undergraduate laboratories ranging from single and multi-slit diffraction, to optical Fourier transformations. Lastly, we show that using amplitude holography, the device can be used to generate transverse spatial modes, e.g. Laguerre-Gaussian beam, which are one of the most commonly used spatially structured beams.