van der Waals Metallic Transition Metal Dichalcogenides.

Transition metal dichalcogenides are layered materials which are composed of transition metals and chalcogens of the group VIA in a 1:2 ratio. These layered materials have been extensively investigated over synthesis and optical and electrical properties for several decades. It can be insulators, semiconductors, or metals revealing all types of condensed matter properties from a magnetic lattice distorted to superconducting characteristics. Some of these also feature the topological manner. Instead of covering the semiconducting properties of transition metal dichalcogenides, which have been extensively revisited and reviewed elsewhere, here we present the structures of metallic transition metal dichalcogenides and their synthetic approaches for not only high-quality wafer-scale samples using conventional methods (e.g., chemical vapor transport, chemical vapor deposition) but also local small areas by a modification of the materials using Li intercalation, electron beam irradiation, light illumination, pressures, and strains. Some representative band structures of metallic transition metal dichalcogenides and their strong layer-dependence are reviewed and updated, both in theoretical calculations and experiments. In addition, we discuss the physical properties of metallic transition metal dichalcogenides such as periodic lattice distortion, magnetoresistance, superconductivity, topological insulator, and Weyl semimetal. Approaches to overcome current challenges related to these materials are also proposed.

[1]  M. Cai,et al.  A first-principles study of magnetic variation via doping vacancy in monolayer VS2 , 2016 .

[2]  P. Colombet,et al.  Ferro-antiferromagnetic phase transition in a diluted triangular chromium III lattice : The NaxCrxTi1−xS2 compounds , 1983 .

[3]  G. Wiegers,et al.  The crystal structure of vanadium ditelluride, V1+xTe2 , 1984 .

[4]  A Castellanos-Gomez,et al.  Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor. , 2012, Nano letters.

[5]  Yu-heng Zhang,et al.  De Hass-van Alphen and magnetoresistance reveal predominantly single-band transport behavior in PdTe2 , 2016, Scientific Reports.

[6]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[7]  Xiaojun Wu,et al.  Ultrathin nanosheets of vanadium diselenide: a metallic two-dimensional material with ferromagnetic charge-density-wave behavior. , 2013, Angewandte Chemie.

[8]  Jing Kong,et al.  Role of Molecular Sieves in the CVD Synthesis of Large‐Area 2D MoTe2 , 2017 .

[9]  Xuedong Bai,et al.  Atomic mechanism of dynamic electrochemical lithiation processes of MoS₂ nanosheets. , 2014, Journal of the American Chemical Society.

[10]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[11]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[12]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[13]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[14]  Characterization of collective ground states in single-layer NbSe 2 , 2015, 1506.08460.

[15]  P. Eklund,et al.  Electric field effect on superconductivity in atomically thin flakes of NbSe 2 , 2009 .

[16]  Xin Sun,et al.  Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. , 2012, ACS nano.

[17]  Jie Shan,et al.  Strongly enhanced charge-density-wave order in monolayer NbSe2. , 2015, Nature nanotechnology.

[18]  I. Parkin,et al.  Atmospheric pressure CVD of TiSe2 thin films on glass , 2006 .

[19]  Ying-Sheng Huang,et al.  Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. , 2014, Nature nanotechnology.

[20]  Zhe Lin,et al.  Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning , 2015, Scientific Reports.

[21]  H. Pan Electronic and Magnetic Properties of Vanadium Dichalcogenides Monolayers Tuned by Hydrogenation , 2014 .

[22]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[23]  A. Neto,et al.  Controlling many-body states by the electric-field effect in a two-dimensional material , 2016, Nature.

[24]  Olle Eriksson,et al.  Two-Dimensional Materials from Data Filtering and Ab Initio Calculations , 2013 .

[25]  Sung Wng Kim,et al.  Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride , 2017 .

[26]  H. Ago,et al.  Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. , 2013, Nanoscale.

[27]  J. Cheon,et al.  Chemical Vapor Deposition of MoS2 and TiS2 Films From the Metal−Organic Precursors Mo(S-t-Bu)4 and Ti(S-t-Bu)4 , 1997 .

[28]  R. Cava,et al.  Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe_{2}. , 2017, Physical review letters.

[29]  Peng Yu,et al.  Large‐Area and High‐Quality 2D Transition Metal Telluride , 2016, Advanced materials.

[30]  Jun Zhang,et al.  Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .

[31]  M. Ge,et al.  Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe2 and Applications for Devices. , 2015, ACS nano.

[32]  R. Friend,et al.  Stoichiometry effects in angle -resolved photoemission and transport studies of Ti1+xS2 , 1983 .

[33]  W. Jaegermann,et al.  Band lineup of a SnS2/SnSe2/SnS2 semiconductor quantum well structure prepared by van der Waals epitaxy , 1999 .

[34]  José M. Gómez-Rodríguez,et al.  Atomic-scale control of graphene magnetism by using hydrogen atoms , 2016, Science.

[35]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[36]  Haijun Zhang,et al.  Topological insulators from the perspective of first‐principles calculations , 2012, Topology and Physics.

[37]  Ying Dai,et al.  Tunable electronic and dielectric behavior of GaS and GaSe monolayers. , 2013, Physical chemistry chemical physics : PCCP.

[38]  Jing Zhang,et al.  Facile synthesis of single-crystal NbSe2 ultrathin nanosheets via a pressureless sintered process , 2014 .

[39]  Eun Sung Kim,et al.  Laser thinning for monolayer graphene formation: heat sink and interference effect. , 2011, ACS nano.

[40]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[41]  R. Thorne Charge‐Density‐Wave Conductors , 1996 .

[42]  Hisato Yamaguchi,et al.  Coherent atomic and electronic heterostructures of single-layer MoS2. , 2012, ACS nano.

[43]  C. Chien,et al.  LARGE MAGNETORESISTANCE AND FINITE-SIZE EFFECTS IN ELECTRODEPOSITED SINGLE-CRYSTAL BI THIN FILMS , 1999 .

[44]  D. Cahill,et al.  Direct Synthesis of Large‐Scale WTe2 Thin Films with Low Thermal Conductivity , 2017 .

[45]  M. Ausloos,et al.  Charge- and spin-density-wave superconductors , 2001 .

[46]  K. Cheng Theory of Superconductivity , 1948, Nature.

[47]  M. Burghard,et al.  Raman Characterization of the Charge Density Wave Phase of 1T-TiSe2: From Bulk to Atomically Thin Layers. , 2017, ACS nano.

[48]  Conyers Herring,et al.  Accidental Degeneracy in the Energy Bands of Crystals , 1937 .

[49]  M. Fuhrer,et al.  Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS2 Heterostructures. , 2017, ACS nano.

[50]  L. Kourkoutis,et al.  Structure and control of charge density waves in two-dimensional 1T-TaS2 , 2015, Proceedings of the National Academy of Sciences.

[51]  W. Duan,et al.  High quality atomically thin PtSe2 films grown by molecular beam epitaxy , 2017, 1703.04279.

[52]  J. C. Lee,et al.  Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2 , 2013, 1309.4051.

[53]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[54]  Masaki Nakano,et al.  Memristive phase switching in two-dimensional 1T-TaS2 crystals , 2015, Science Advances.

[55]  I. Parkin,et al.  Atmospheric pressure chemical vapour deposition of NbSe2 thin films on glass , 2006 .

[56]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[57]  M. Halcrow Jahn—Teller Distortions in Transition Metal Compounds, and Their Importance in Functional Molecular and Inorganic Materials , 2013 .

[58]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[59]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2. , 1997 .

[60]  S. An,et al.  A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe2 , 2015, Advanced materials.

[61]  Young Hee Lee,et al.  Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides , 2017, Nanotechnology.

[62]  T. J. Hicks,et al.  Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3 , 2015 .

[63]  D. Xue,et al.  Ferromagnetism in ultrathin VS2 nanosheets , 2013 .

[64]  Robert M. Wallace,et al.  W Te2 thin films grown by beam-interrupted molecular beam epitaxy , 2017 .

[65]  D. Schleich,et al.  Crystal growth and characterization of Pt0.97S2 , 1974 .

[66]  Conor P. Cullen,et al.  High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature. , 2016, ACS nano.

[67]  P. Miró,et al.  A Single‐Material Logical Junction Based on 2D Crystal PdS2 , 2016, Advanced materials.

[68]  Xi Dai,et al.  Crossover of the three-dimensional topological insulator Bi 2 Se 3 to the two-dimensional limit , 2010 .

[69]  R. Shimizu,et al.  Unconventional Charge-Density-Wave Transition in Monolayer 1T-TiSe2. , 2016, ACS nano.

[70]  Y. Sun,et al.  Coexistence of superconductivity and commensurate charge density wave in 4Hb-TaS2−xSex single crystals , 2014 .

[71]  V. Grasso Electronic structure and electronic transitions in layered materials , 1986 .

[72]  Wenli Song,et al.  Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2−xSex , 2013 .

[73]  Q. Xue,et al.  Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. , 2015, Nature materials.

[74]  W. Kohn Image of the Fermi Surface in the Vibration Spectrum of a Metal , 1959 .

[75]  Su-Yang Xu,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.

[76]  A. I. Lichtenstein,et al.  Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations , 2007, 0710.1971.

[77]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[78]  M. Chou,et al.  Charge density wave transition in single-layer titanium diselenide , 2015, Nature Communications.

[79]  Brian M. Bersch,et al.  Tungsten Ditelluride: a layered semimetal , 2015, Scientific Reports.

[80]  K. Koepernik,et al.  Orbital textures and charge density waves in transition metal dichalcogenides , 2014, Nature Physics.

[81]  M. Zahid Hasan,et al.  Discovery of Weyl fermion semimetals and topological Fermi arc states , 2017, 1702.07310.

[82]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[83]  P. P. Hankare,et al.  Effect of annealing on properties of ZrSe2 thin films , 2006 .

[84]  S. Lim,et al.  Electrical Transport Properties of Polymorphic MoS2. , 2016, ACS nano.

[85]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[86]  Y. Sun,et al.  Strain-controlled switch between ferromagnetism and antiferromagnetism in 1 T -Cr X 2 (X =Se , Te) monolayers , 2015, 1509.07572.

[87]  C. Chen,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2017, Nature communications.

[88]  S. Qin,et al.  Molecular beam epitaxy growth of atomically ultrathin MoTe2 lateral heterophase homojunctions on graphene substrates , 2017 .

[89]  P. Monceau Electronic crystals: an experimental overview , 2012, 1307.0929.

[90]  David S. Sholl,et al.  Density Functional Theory , 2009 .

[91]  Sung-Jin,et al.  Waals Homojunction : Ideal p – n Diode Behavior in MoSe 2 , 2015 .

[92]  D. Xue,et al.  Room-temperature ferromagnetism in Er-doped ZnO thin films , 2009 .

[93]  Q. Gibson,et al.  Correlation of crystal quality and extreme magnetoresistance of WTe2 , 2015, 1506.04823.

[94]  G. Kliche Far-infrared and X-ray investigations of the mixed platinum dichalcogenides PtS2−xSex, PtSe2−xTex, and PtS2−xTex , 1985 .

[95]  Shiyan Li,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[96]  Yeliang Wang,et al.  Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. , 2015, Nano letters.

[97]  T. Chiang,et al.  Quantum melting of the charge-density-wave state in 1T-TiSe2. , 2003, Physical review letters.

[98]  Kasper P. Kepp,et al.  Comment on “Density functional theory is straying from the path toward the exact functional” , 2017, Science.

[99]  Y. Higo,et al.  Large Tunneling Magnetoresistance in GaMnAs / AlAs / GaMnAs Ferromagnetic Semiconductor Tunnel Junctions , 2001 .

[100]  D. Schleich,et al.  Crystal growth and characterization of PdTe2 , 1976 .

[101]  A. Dimoulas,et al.  Molecular beam epitaxy of thin HfTe 2 semimetal films , 2016, 1608.07114.

[102]  Y. Toda,et al.  Chiral charge-density waves. , 2010, Physical review letters.

[103]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[104]  I. I. Mazin,et al.  Fermi surface nesting and the origin of charge density waves in metals , 2007, 0708.1744.

[105]  Haixin Chang,et al.  Tellurization Velocity-Dependent Metallic-Semiconducting-Metallic Phase Evolution in Chemical Vapor Deposition Growth of Large-Area, Few-Layer MoTe2. , 2017, ACS nano.

[106]  Zu-Yan Xu,et al.  Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2 , 2016 .

[107]  M. Calandra,et al.  Critical Role of the Exchange Interaction for the Electronic Structure and Charge-Density-Wave Formation in TiSe_{2}. , 2017, Physical review letters.

[108]  T. Nagahama,et al.  Chemical Vapor Deposition of NbS2 from a Chloride Source with H2 Flow: Orientation Control of Ultrathin Crystals Directly Grown on SiO2/Si Substrate and Charge Density Wave Transition , 2016 .

[109]  Qingsheng Zeng,et al.  Controlled Synthesis of Atomically Thin 1T-TaS2 for Tunable Charge Density Wave Phase Transitions , 2016 .

[110]  Artem R. Oganov,et al.  Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs , 2015, Science.

[111]  J. Jia,et al.  Quantum Effects and Phase Tuning in Epitaxial Hexagonal and Monoclinic MoTe2 Monolayers. , 2016, ACS nano.

[112]  M. Burghard,et al.  Ab initio computation of the transition temperature of the charge density wave transition in TiSe2 , 2015, 1508.00823.

[113]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[114]  B. Sumpter,et al.  Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes. , 2009, ACS nano.

[115]  T. Xia,et al.  Low-temperature properties of β-MoTe2 grown by the chemical vapor transport method , 2016 .

[116]  E. Tosatti,et al.  Electrical, structural and magnetic properties of pure and doped 1T-TaS2 , 1979 .

[117]  S. Lim,et al.  Phase conversion of chemically exfoliated molybdenum disulfide , 2017 .

[118]  Takashi Taniguchi,et al.  Two-dimensional metallic NbS2: growth, optical identification and transport properties , 2016 .

[119]  C. Marianetti,et al.  Electronic correlations in monolayer VS$_2$ , 2016, 1602.08483.

[120]  B. Parkinson,et al.  Periodic lattice distortions as a result of lattice mismatch in epitaxial films of two‐dimensional materials , 1991 .

[121]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[122]  Hyeong Rae Noh,et al.  Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. , 2017, Nature nanotechnology.

[123]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[124]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[125]  Anupama B. Kaul,et al.  Two-dimensional layered materials: Structure, properties, and prospects for device applications , 2014 .

[126]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2 , 1997 .

[127]  R. Miller,et al.  Snapshots of cooperative atomic motions in the optical suppression of charge density waves , 2010, Nature.

[128]  Zhe Wang,et al.  Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride , 2015, Nature Communications.

[129]  Xinsheng Wang,et al.  Controlled Synthesis of ZrS2 Monolayer and Few Layers on Hexagonal Boron Nitride. , 2015, Journal of the American Chemical Society.

[130]  Fast and Reliable , 2015, ADHESION ADHESIVES&SEALANTS.

[131]  H. Ago,et al.  High Mobility WS2 Transistors Realized by Multilayer Graphene Electrodes and Application to High Responsivity Flexible Photodetectors , 2017 .

[132]  K. Motizuki Structural Phase Transitions in Layered Transition Metal Compounds , 1986 .

[133]  Qiang Li,et al.  Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics , 2016, Advanced materials.

[134]  G. Steele,et al.  Fast and reliable identification of atomically thin layers of TaSe2 crystals , 2013, Nano Research.

[135]  S. Ohta,et al.  Effect of Te-substitution on magnetic properties of Cr2Se3−yTey (0 ⩽ y ⩽ 0.15) , 1997 .

[136]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[137]  I. Mazin Superconductivity: Extraordinarily conventional , 2015, Nature.

[138]  Andrew M Rappe,et al.  Monolayer Single-Crystal 1T'-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. , 2016, Nano letters.

[139]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[140]  Zijing Ding,et al.  Chemical Stabilization of 1T' Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity. , 2017, Journal of the American Chemical Society.

[141]  Young Hee Lee,et al.  Absorption dichroism of monolayer 1T′-MoTe2 in visible range , 2016 .

[142]  H. Ebert,et al.  Crystal structures, unusual magnetic properties and electronic band structures of Cr5−xTixTe8 , 2005 .

[143]  M. Batzill,et al.  Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2: phase, thermal, and chemical stability , 2015 .

[144]  Hsin Lin,et al.  Colloquium : Topological band theory , 2016, 1603.03576.

[145]  J. Koskikallio,et al.  The Non-metal Rich Region of the Hf-Te System. , 1971 .

[146]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[147]  P. Canfield,et al.  Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.

[148]  Fengmin Wu,et al.  Ferromagnetism in VS2 nanostructures: Nanoflowers versus ultrathin nanosheets , 2014 .

[149]  GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. , 2016, Nano letters.

[150]  Zhe Sun,et al.  Experimental evidence for type-II Dirac semimetal in PtSe 2 , 2017, 1703.04242.

[151]  E. Reed,et al.  Chemical Vapor Deposition Growth of Few-Layer MoTe2 in the 2H, 1T', and 1T Phases: Tunable Properties of MoTe2 Films. , 2017, ACS nano.

[152]  J. S. Kim,et al.  Charge-ordering cascade with spin–orbit Mott dimer states in metallic iridium ditelluride , 2015, Nature Communications.

[153]  R. Hennig,et al.  Stability and magnetism of strongly correlated single-layer VS 2 , 2016 .

[154]  Yulin Chen,et al.  Quantum spin Hall state in monolayer 1T'-WTe2 , 2017, Nature Physics.

[155]  R. Shimizu,et al.  Monolayer 1T-NbSe2 as a Mott insulator , 2016 .

[156]  Guanghou Wang,et al.  Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2 , 2016, Nature Communications.

[157]  Yanrong Li,et al.  Vertically oriented few-layered HfS2 nanosheets: growth mechanism and optical properties , 2016 .

[158]  A. Dimoulas,et al.  Epitaxial 2D MoSe2 (HfSe2) Semiconductor/2D TaSe2 Metal van der Waals Heterostructures. , 2016, ACS applied materials & interfaces.

[159]  Helmut Eschrig,et al.  Microscopic theory of superconductivity , 1969 .

[160]  Sang Hoon Chae,et al.  Phase-Engineered Synthesis of Centimeter-Scale 1T'- and 2H-Molybdenum Ditelluride Thin Films. , 2015, ACS nano.

[161]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[162]  M. Calandra,et al.  Charge-Density Wave and Superconducting Dome in TiSe$_2$ from Electron- Phonon Interaction , 2013 .

[163]  Martin Korth,et al.  Density Functional Theory: Not Quite the Right Answer for the Right Reason Yet. , 2017, Angewandte Chemie.

[164]  Jing Tao,et al.  Titanic Magnetoresistance in WTe2 , 2014, 1405.0973.

[165]  W. Jaegermann,et al.  Van der Waals epitaxy of thin InSe films on MoTe2 , 1994 .

[166]  R. Cava,et al.  Superconductivity in CuxTiSe2 , 2006, cond-mat/0606529.

[167]  Huixia Luo,et al.  Cr-Doped TiSe2 - A Layered Dichalcogenide Spin Glass , 2015 .

[168]  Yingtao Zhu,et al.  Evidence of the existence of magnetism in pristine VX₂ monolayers (X = S, Se) and their strain-induced tunable magnetic properties. , 2012, ACS nano.

[169]  M. Ellguth,et al.  Momentum microscopy of the layered semiconductor TiS2 and Ni intercalated Ni1/3TiS2 , 2015 .

[170]  P. Ajayan,et al.  Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction , 2015, Advanced materials.

[171]  S. Nagata,et al.  Superconductivity in the metallic layered compound NbTe2 , 1993 .

[172]  A. Fujiwara,et al.  Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2 , 2014, Scientific Reports.

[173]  H. Murata,et al.  Modulated STM images of ultrathin MoSe 2 films grown on MoS 2 (0001) studied by STM/STS , 1999 .

[174]  J. Ortega,et al.  High Temperature Ferromagnetism in a GdAg2 Monolayer. , 2016, Nano letters.

[175]  R. Cava,et al.  Electronic structure basis for the extraordinary magnetoresistance in WTe2. , 2014, Physical review letters.

[176]  A. R. Jani,et al.  X-ray diffraction studies of NbTe2 single crystal , 2004 .

[177]  James K. Freericks,et al.  Zone-center phonons of bulk, few-layer, and monolayer 1 T − TaS 2 : Detection of commensurate charge density wave phase through Raman scattering , 2015, 1511.04462.

[178]  High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition , 2017, Nature Communications.

[179]  Yung Woo Park,et al.  Large-area synthesis of high-quality monolayer 1T’-WTe2 flakes , 2017, 2d materials.

[180]  Direct visualization of a two-dimensional topological insulator in the single-layer 1 T ' -WT e 2 , 2017, 1703.04042.

[181]  C. Battaglia,et al.  Evidence for an excitonic insulator phase in 1T-TiSe2. , 2007, Physical review letters.

[182]  R. Howard,et al.  Properties of intercalated 2H‐NbSe2, 4Hb‐TaS2, and 1T‐TaS2 , 1975 .

[183]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[184]  J. D. Lee,et al.  Strain-Induced Magnetism in Single-Layer MoS2: Origin and Manipulation , 2015 .

[185]  E. Giannini,et al.  Chloride-Driven Chemical Vapor Transport Method for Crystal Growth of Transition Metal Dichalcogenides , 2013 .

[186]  Lin Li,et al.  Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser , 2013, Nanotechnology.

[187]  Kenji Watanabe,et al.  Molecular beam epitaxy growth of monolayer niobium diselenide flakes , 2016 .

[188]  A. Eftekhari Electrocatalysts for hydrogen evolution reaction , 2017 .

[189]  Doron Naveh,et al.  Mn-doped monolayer MoS$_2$: An atomically thin dilute magnetic semiconductor , 2013 .

[190]  A. Liao,et al.  Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. , 2015, Journal of the American Chemical Society.

[191]  S. Louie,et al.  Classification of charge density waves based on their nature , 2015, Proceedings of the National Academy of Sciences.

[192]  P. Strobel,et al.  Ferromagnetism in layered metastable 1T-CrTe2 , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[193]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[194]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[195]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[196]  M. Calandra,et al.  Strong anharmonicity induces quantum melting of charge density wave in 2H-NbSe$_2$ under pressure , 2015, 1508.06463.

[197]  Teng Yang,et al.  Strain-induced magnetism in MoS2 monolayer with defects , 2013, 1309.2066.

[198]  Micael J. T. Oliveira,et al.  Recent developments in libxc - A comprehensive library of functionals for density functional theory , 2018, SoftwareX.

[199]  C. F. V. Bruggen,et al.  MAGNETIC-SUSCEPTIBILITY AND ELECTRICAL-PROPERTIES OF VSE2 SINGLE-CRYSTALS , 1976 .

[200]  Hao Jin,et al.  Ferromagnetism of undoped GaN mediated by through-bond spin polarization between nitrogen dangling bonds , 2009 .

[201]  A. Balchin,et al.  The growth by iodine vapour transport techniques and the crystal structures of layer compounds in the series TiSxSe2−x, TiSxTe2−x, TiSexTe2−x , 1974 .

[202]  A. Burkov Topological semimetals. , 2016, Nature materials.

[203]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[204]  B. Tanner,et al.  Nearly perfect single crystals of layer compounds grown by iodine vapour-transport techniques , 1972 .

[205]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[206]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[207]  L. Balents Weyl electrons kiss , 2011 .

[208]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[209]  Yiming Zhu,et al.  Thickness and temperature dependent electrical properties of ZrS2 thin films directly grown on hexagonal boron nitride , 2016, Nano Research.

[210]  H. Ebert,et al.  Anion substitution effects on structure and magnetism in the chromium chalcogenide Cr5Te8—Part I: Cluster glass behavior in trigonal Cr(1+x)Q2 with basic cell (Q=Te, Se; Te:Se=7:1) , 2004 .

[211]  Ch. Bheema Lingam,et al.  Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides , 2016 .

[212]  A. Rajca,et al.  Exchange coupling mediated through-bonds and through-space in conformationally constrained polyradical scaffolds: calix[4]arene nitroxide tetraradicals and diradical. , 2006, Journal of the American Chemical Society.

[213]  P. Strobel,et al.  Antiferromagnetism and ferromagnetism in layered1T-CrSe2with V and Ti replacements , 2013 .

[214]  G. Wexler,et al.  Fermi surfaces, charge-transfer and charge-density-waves in 4Hb-TaS2 , 1978 .

[215]  L. Petaccia,et al.  Splitting of the Ti-3d bands of TiSe2 in the charge-density wave phase , 2017 .

[216]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, 1507.08731.

[217]  W. Duan,et al.  Type-II Dirac fermions in the PtSe 2 class of transition metal dichalcogenides , 2016, 1607.07965.

[218]  K. Loh,et al.  Phase-engineered transition-metal dichalcogenides for energy and electronics , 2015 .

[219]  R Huber,et al.  Non-thermal separation of electronic and structural orders in a persisting charge density wave. , 2014, Nature materials.

[220]  Jing Kong,et al.  Synthesis of High‐Quality Large‐Area Homogenous 1T′ MoTe2 from Chemical Vapor Deposition , 2016, Advanced materials.

[221]  B. Parkinson,et al.  van der Waals epitaxial growth and characterization of MoSe2 thin films on SnS2 , 1990 .

[222]  D. Gao,et al.  Ferromagnetism Induced by Oxygen Vacancies in Zinc Peroxide Nanoparticles , 2011 .

[223]  Zheng Liu,et al.  Mottness Collapse in 1 T − TaS 2 − x Se x Transition-Metal Dichalcogenide: An Interplay between Localized and Itinerant Orbitals , 2016, 1611.08957.

[224]  A. Vishwanath,et al.  Beyond Band Insulators: Topology of Semi-metals and Interacting Phases , 2013, 1301.0330.

[225]  Dong Qian,et al.  Epitaxial growth of two-dimensional stanene. , 2015, Nature materials.

[226]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[227]  S. Nagata,et al.  Superconductivity in the layered compound 2H-TaS2 , 1992 .

[228]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[229]  Claire J. Carmalt,et al.  Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films , 2007 .

[230]  F. Grønvold,et al.  High Temperature X-Ray Study of the Thermal Expansion of PtS2, PtSe2, PtTe2 and PdTe2. , 1959 .

[231]  Superconductivity in single-layer films of FeSe with a transition temperature above 100 K , 2014, 1406.3435.

[232]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[233]  K. Bohnen,et al.  Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. , 2011, Physical review letters.

[234]  L. Kipp,et al.  Charge-density-wave phase transition in 1 T − TiSe 2 : Excitonic insulator versus band-type Jahn-Teller mechanism , 2002 .

[235]  Huixia Luo,et al.  Polytypism, polymorphism, and superconductivity in TaSe2−xTex , 2015, Proceedings of the National Academy of Sciences of the United States of America.

[236]  T. Frauenheim,et al.  Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons. , 2012, The journal of physical chemistry letters.

[237]  M. Chou,et al.  Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe2. , 2016, Nano letters.

[238]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[239]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[240]  Su-Yang Xu,et al.  Weyl semimetals, Fermi arcs and chiral anomalies. , 2016, Nature materials.

[241]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .