Compact quantum-dot-based ultrafast lasers

Solid-state lasers that can generate optical pulses in the picosecond and femtosecond domains have progressed rapidly over the past decade from laboratory systems to an impressive range of commercial systems. Novel materials, notably quantum-dot semiconductor structures, have enhanced the characteristics of such lasers and opened up new possibilities in ultrafast science and technology. In our most recent work we have shown that quantum-dot devices can be designed to provide efficient means of generating and amplifying ultrashort optical pulses at high repetition rate rates.

[1]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[2]  W. Sibbett,et al.  Temperature dependence of pulse duration in a mode-locked quantum-dot laser: experiment and theory , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[3]  W Sibbett,et al.  Ultrashort-pulse lasers: big payoffs in a flash. , 2000, Scientific American.

[4]  Duncan W. McBranch,et al.  Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals , 1998 .

[5]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[6]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[7]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[8]  L. O'Faolain,et al.  Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[9]  Wolfgang Werner Langbein,et al.  Ultrafast carrier dynamics in InGaAs quantum dot materials and devices , 2006 .

[10]  Nikolai N. Ledentsov,et al.  Long-wavelength (1.3-1.5 micron) quantum dot lasers based on GaAs , 2004, SPIE OPTO.

[11]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[12]  Wilson Sibbett,et al.  Temperature dependence of electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm , 2007 .

[13]  Peter J. Delfyett,et al.  Ultralow noise optical pulse generation in an actively mode-locked quantum-dot semiconductor laser , 2006 .

[14]  J. Renaudier,et al.  45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5 µm , 2005 .

[15]  S. Gaponenko Optical properties of semiconductor nanocrystals , 1998 .

[16]  W. Sibbett,et al.  Temperature dependence of electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[17]  N. Peyghambarian,et al.  PbS quantum-dot-doped glasses for ultrashort-pulse generation , 2000 .

[18]  Ursula Keller,et al.  Passively modelocked surface-emitting semiconductor lasers , 2006 .

[19]  Wilson Sibbett,et al.  Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[20]  E. L. Portnoi,et al.  Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications , 2000 .

[21]  W. Sibbett,et al.  Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier , 2003, IEEE Photonics Technology Letters.

[22]  W. Sibbett,et al.  Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers , 2005, IEEE Photonics Technology Letters.

[23]  A D Yoffe,et al.  Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems , 2001 .

[24]  W. Sibbett,et al.  High--power ultrashort pulses output from a modelocked two-section quantum-dot laser , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[25]  Oleg G. Okhotnikov,et al.  Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers , 2005 .

[26]  Sugawara,et al.  Phonon bottleneck in self-formed InxGa1-xAs/GaAs quantum dots by electroluminescence and time-resolved photoluminescence. , 1996, Physical review. B, Condensed matter.

[27]  A. R. Kovsh,et al.  Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser , 2006 .

[28]  P Vasil'Ev,et al.  Ultrafast Diode Lasers , 1996 .

[29]  Richard A. Hogg,et al.  Broad-band Superluminescent Light Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells , 2005 .

[30]  A. Fiore,et al.  High-Power Quantum-Dot Superluminescent Diodes With p-Doped Active Region , 2006, IEEE Photonics Technology Letters.

[31]  Klimov,et al.  Mechanisms for optical nonlinearities and ultrafast carrier dynamics in CuxS nanocrystals. , 1996, Physical review. B, Condensed matter.

[32]  Frank W. Wise,et al.  Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement , 2001 .

[33]  Alexander M. Malyarevich,et al.  Nonlinear spectroscopy of PbS quantum-dot-doped glasses as saturable absorbers for the mode locking of solid-state lasers , 2006 .

[34]  E. Gini,et al.  50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power , 2006, IEEE Journal of Quantum Electronics.

[35]  O. Okhotnikov,et al.  Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications , 2004 .

[36]  Alexey E. Zhukov,et al.  Quantum-dot-based saturable absorber for femtosecond mode-locked operation of a solid-state laser , 2006, QELS 2006.

[37]  Peter J. Delfyett,et al.  Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser , 2006 .

[38]  Mikhail V. Maximov,et al.  Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates , 1999 .

[39]  D. Bimberg,et al.  Excited-state gain dynamics in InGaAs quantum-dot amplifiers , 2005, IEEE Photonics Technology Letters.

[40]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[41]  Nikolai N. Ledentsov,et al.  Distortion-free optical amplification of 20-80 GHz modelocked laser pulses at 1.3 [micro sign]m using quantum dots , 2006 .

[42]  E. Rodriguez,et al.  Ultrafast optical switching with CdTe nanocrystals in a glass matrix , 2005 .

[43]  C. Flytzanis Nonlinear optics in mesoscopic composite materials , 2005 .

[44]  J. Zhang,et al.  Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles , 2000 .

[45]  Y. Masumoto,et al.  Size-dependent picosecond energy relaxation in PbSe quantum dots , 2000 .

[46]  D. Bimberg,et al.  Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Evgeny A. Viktorov,et al.  Model for mode locking in quantum dot lasers , 2006 .

[48]  Andrea Fiore,et al.  Simultaneous two-state lasing in quantum-dot lasers , 2003 .

[49]  W. Sibbett,et al.  High power all-quantum-dot based external cavity mode-locked laser , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[50]  Mikhail V. Maximov,et al.  High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers , 2005 .

[51]  E. Rafailov,et al.  Mode-locked quantum-dot lasers , 2007 .

[52]  H. Kurz,et al.  Optical nonlinearities and carrier trapping dynamics in CdS and CuxS nanocrystals , 1996 .

[53]  Richard V. Penty,et al.  10 GHz hybrid modelocking of monolithic InGaAs quantum dot lasers , 2003 .

[54]  Andreas Stintz,et al.  Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers , 2001 .

[55]  Peter J. Delfyett,et al.  Ultrashort, high-power pulse generation from a master oscillator power amplifier based on external cavity mode locking of a quantum-dot two-section diode laser , 2005 .

[56]  W. Sibbett,et al.  Stable mode-locked operation up to 80 /spl deg/C from an InGaAs quantum-dot laser , 2006, IEEE Photonics Technology Letters.

[57]  D. Deppe,et al.  Low-threshold high-T/sub 0/ 1.3-/spl mu/m InAs quantum-dot lasers due to p-type modulation doping of the active region , 2002, IEEE Photonics Technology Letters.

[58]  Wilson Sibbett,et al.  High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser , 2005 .

[59]  W. Sibbett,et al.  Ground and excited-state modelocking in a two-section quantum-dot laser , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[60]  Wilson Sibbett,et al.  Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3μm , 2006 .

[61]  M. Hopkinson,et al.  High-performance three-layer 1.3-/spl mu/m InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents , 2005, IEEE Photonics Technology Letters.

[62]  W. Sibbett,et al.  Semiconductor quantum-dot saturable absorber mode-locked fiber laser , 2006, IEEE Photonics Technology Letters.

[63]  P. V. Sytin Ultrafast diode lasers : fundamentals and applications , 1995 .

[64]  W. Sibbett,et al.  New mode locking regime in a quantum-dot laser: Enhancement by simultaneous cw excited-state emission , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[65]  Andreas Tünnermann,et al.  High-gain quantum-dot semiconductor optical amplifier for 1300 nm , 2003 .

[66]  Abderrahim Ramdane,et al.  Subpicosecond pulse generation at 134GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56μm , 2006 .

[67]  Richard V. Penty,et al.  Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers , 2006 .

[68]  Alexey E. Zhukov,et al.  Transform-limited optical pulses from 18 GHz monolithic modelocked quantum dot lasers operating at ∼1.3 µm , 2004 .