Polstracc: Airborne Experiment for Studying the Polar Stratosphere in a Changing Climate with the High Altitude and Long Range Research Aircraft (HALO)

AbstractThe Polar Stratosphere in a Changing Climate (POLSTRACC) mission employed the German High Altitude and Long Range Research Aircraft (HALO). The payload comprised an innovative combination o...

[1]  M. Kaufmann,et al.  Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves , 2019, Atmospheric Chemistry and Physics.

[2]  M. Wirth,et al.  Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region. , 2019, Applied optics.

[3]  Muyin Wang,et al.  An integrated index of recent pan-Arctic climate change , 2019, Environmental Research Letters.

[4]  P. Braesicke,et al.  Nitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015–2016 , 2019, Atmospheric Chemistry and Physics.

[5]  M. Santee,et al.  Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations , 2019, Atmospheric Chemistry and Physics.

[6]  U. Schumann,et al.  Intercomparison of midlatitude tropospheric and lower-stratospheric water vapor measurements and comparison to ECMWF humidity data , 2018, Atmospheric Chemistry and Physics.

[7]  Günther Zängl,et al.  ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical weather forecasting and climate simulations , 2018, Geoscientific Model Development.

[8]  M. Rapp,et al.  Gravity waves excited during a minor sudden stratospheric warming , 2018, Atmospheric Chemistry and Physics.

[9]  M. Bramberger,et al.  Vertically Propagating Mountain Waves—A Hazard for High-Flying Aircraft? , 2018, Journal of Applied Meteorology and Climatology.

[10]  M. Santee,et al.  Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS , 2018, Atmospheric Measurement Techniques.

[11]  Lamont R. Poole,et al.  Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017 , 2018, Atmospheric Chemistry and Physics.

[12]  J. Lelieveld,et al.  The South Asian monsoon—pollution pump and purifier , 2018, Science.

[13]  F. Haenel,et al.  Mesoscale fine structure of a tropopause fold over mountains , 2018, Atmospheric Chemistry and Physics.

[14]  M. Chipperfield,et al.  On the discrepancy of HCl processing in the core of the wintertime polar vortices , 2018, Atmospheric Chemistry and Physics.

[15]  M. Pitts,et al.  Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation , 2017, Atmospheric Chemistry and Physics.

[16]  Martin Riese,et al.  First tomographic observations of gravity waves by the infrared limb imager GLORIA , 2017 .

[17]  Eric S. Gentry,et al.  The novel HALO mini-DOAS instrument: inferring trace gas concentrations from airborne UV/visible limb spectroscopy under all skies using the scaling method , 2017 .

[18]  P. Braesicke,et al.  Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter , 2017 .

[19]  H. Oelhaf,et al.  Mixing and ageing in the polar lower stratosphere in winter 2015–2016 , 2017 .

[20]  A. Minikin,et al.  Ice particle sampling from aircraft – influence of the probing position on the ice water content , 2017, Atmospheric Measurement Techniques.

[21]  P. Bernath,et al.  Depletion of ozone and reservoir species of chlorine and nitrogen oxide in the lower Antarctic polar vortex measured from aircraft , 2017 .

[22]  C. Voigt,et al.  Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016 , 2017, Atmospheric Chemistry and Physics.

[23]  M. Rapp,et al.  Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution? , 2017 .

[24]  M. Wendisch,et al.  ML-CIRRUS : The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO , 2017 .

[25]  M. Pitts,et al.  Multilevel cloud structures over Svalbard. , 2017, Monthly weather review.

[26]  S. Solomon,et al.  Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate , 2017 .

[27]  Volker Ebert,et al.  HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data , 2017 .

[28]  A. Dörnbrack,et al.  The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016 , 2016 .

[29]  G. Manney,et al.  The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss , 2016 .

[30]  S. Wofsy,et al.  A new Differential Optical Absorption Spectroscopy instrument to study atmospheric chemistry from a high-altitude unmanned aircraft , 2016 .

[31]  J. Lamarque,et al.  Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century , 2016 .

[32]  S. Wofsy,et al.  Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine , 2016 .

[33]  S. Bathiany,et al.  Why CO 2 cools the middle atmosphere – a consolidating model perspective , 2016 .

[34]  P. V. Velthoven,et al.  NO and NOy in the upper troposphere: Nine years of CARIBIC measurements onboard a passenger aircraft , 2016 .

[35]  D. Fahey,et al.  The airborne mass spectrometer AIMS – Part 1: AIMS-H 2 O for UTLS water vapor measurements , 2015 .

[36]  C. Voigt,et al.  The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS , 2015 .

[37]  H. Schlager,et al.  Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012 , 2015 .

[38]  L. Polvani,et al.  On the surface impact of Arctic stratospheric ozone extremes , 2015 .

[39]  Gerald Wetzel,et al.  Partitioning and budget of inorganic and organic chlorine species observed by MIPAS-B and TELIS in the Arctic in March 2011 , 2015 .

[40]  Adam A. Scaife,et al.  Stratospheric influence on tropospheric jet streams, storm tracks and surface weather , 2015 .

[41]  B. Sinnhuber,et al.  Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends , 2015 .

[42]  Jessica R. Meyer,et al.  Two decades of water vapor measurements with the FISH fluorescence hygrometer: a review , 2015 .

[43]  S. Dhomse,et al.  Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone , 2015 .

[44]  Stanley P. Sander,et al.  NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .

[45]  Johannes Orphal,et al.  Instrument concept of the imaging Fourier transform spectrometer GLORIA , 2014 .

[46]  A. Engel,et al.  Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA , 2014 .

[47]  Johannes Orphal,et al.  Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) scientific objectives , 2014 .

[48]  Karen L. Smith,et al.  The surface impacts of Arctic stratospheric ozone anomalies , 2014 .

[49]  H. Fischer,et al.  Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring , 2014 .

[50]  S. Solomon,et al.  Fundamental differences between Arctic and Antarctic ozone depletion , 2014, Proceedings of the National Academy of Sciences.

[51]  Hans Schlager,et al.  Evolution of CO2, SO2, HCl, and HNO3 in the volcanic plumes from Etna , 2014 .

[52]  Stephan Borrmann,et al.  Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere , 2014 .

[53]  Hans Schlager,et al.  In situ measurements of ice saturation in young contrails , 2014 .

[54]  Lamont R. Poole,et al.  Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales , 2013 .

[55]  Alan G. Jones,et al.  SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders , 2013 .

[56]  L. Polvani,et al.  Are recent Arctic ozone losses caused by increasing greenhouse gases? , 2013 .

[57]  S. Dhomse,et al.  Climate impact of stratospheric ozone recovery , 2013 .

[58]  R. Ruhnke,et al.  Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends , 2013 .

[59]  Larry W. Thomason,et al.  An assessment of CALIOP polar stratospheric cloud composition classification , 2012 .

[60]  Martin Riese,et al.  Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects , 2012 .

[61]  R. Müller,et al.  Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere , 2012 .

[62]  T. Clarmann,et al.  Arctic winter 2010/2011 at the brink of an ozone hole , 2011 .

[63]  U. Naumann,et al.  A 3-D tomographic retrieval approach with advection compensation for the air-borne limb-imager GLORIA , 2011 .

[64]  P. Kushner,et al.  Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change , 2011 .

[65]  K. Schlote-Holubek,et al.  A fast and precise chemiluminescence ozone detector for eddy flux and airborne application , 2011 .

[66]  Mark R. Schoeberl,et al.  Unprecedented Arctic ozone loss in 2011 , 2011, Nature.

[67]  L. Froidevaux,et al.  Trace gas evolution in the lowermost stratosphere from Aura Microwave Limb Sounder measurements , 2011 .

[68]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[69]  Klaus Pfeilsticker,et al.  The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features , 2011 .

[70]  Patrick Jöckel,et al.  Development cycle 2 of the Modular Earth Submodel System (MESSy2) , 2010 .

[71]  Martin Riese,et al.  Towards a 3-D tomographic retrieval for the air-borne limb-imager GLORIA , 2010 .

[72]  E. Ray,et al.  On the structural changes in the Brewer-Dobson circulation after 2000 , 2010 .

[73]  Gerhard Ehret,et al.  The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance , 2009 .

[74]  H. Schlager,et al.  Quantifying transport into the Arctic lowermost stratosphere , 2009 .

[75]  K. Gierens,et al.  Modelling of cirrus clouds – Part 1a: Model description and validation , 2008 .

[76]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[77]  R. P. Lowe,et al.  Atmospheric Chemistry Experiment (ACE): Mission overview , 2005 .

[78]  H. Schlager,et al.  Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs) , 2005 .

[79]  Thomas Koop,et al.  Review of the vapour pressures of ice and supercooled water for atmospheric applications , 2005 .

[80]  D. Fahey,et al.  Nighttime OClO in the winter Arctic vortex , 2005 .

[81]  M. Hegglin,et al.  Seasonality and extent of extratropical TST derived from in-situ CO measurements during SPURT , 2004 .

[82]  A. Weinheimer,et al.  Uptake of reactive nitrogen on cirrus cloud particles during INCA , 2004 .

[83]  Martyn P. Chipperfield,et al.  Arctic ozone loss and climate change , 2004 .

[84]  Rolf Müller,et al.  Mixing and ozone loss in the 1999–2000 Arctic vortex: Simulations with the three‐dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) , 2004 .

[85]  J. Burrows,et al.  Total ozone during the unusual Antarctic winter of 2002 , 2003 .

[86]  S. Dhomse,et al.  Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995–2002 , 2003 .

[87]  M. Kurylo,et al.  An overview of the SOLVE/THESEO 2000 campaign , 2002 .

[88]  D. McKenna,et al.  A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 1. Formulation of advection and mixing , 2002 .

[89]  T. L. Thompson,et al.  The Detection of Large HNO3-Containing Particles in the Winter Arctic Stratosphere , 2001, Science.

[90]  C. Voigt,et al.  Nitric acid trihydrate (NAT) in polar stratospheric clouds. , 2000, Science.

[91]  C. Voigt,et al.  Non‐equilibrium compositions of liquid polar stratospheric clouds in gravity waves , 2000 .

[92]  M. Guirlet,et al.  Large loss of total ozone during the Arctic winter of 1999/2000 , 2000 .

[93]  H. Schlager,et al.  Aircraft measurements of tracer correlations in the Arctic subvortex region during the Polar Stratospheric Aerosol Experiment (POLSTAR) , 2000 .

[94]  P. Crutzen,et al.  Arctic ozone loss due to denitrification , 1999, Science.

[95]  Voigt,et al.  Chemical analysis of polar stratospheric cloud particles , 1999, Science.

[96]  D. McKenna,et al.  Fast in situ stratospheric hygrometers: A new family of balloon‐borne and airborne Lyman α photofragment fluorescence hygrometers , 1999 .

[97]  P. Newman,et al.  An objective determination of the polar vortex using Ertel's potential vorticity , 1996 .

[98]  D. Fahey,et al.  Observations of denitrification and dehydration in the winter polar stratospheres , 1990, Nature.

[99]  David R. Hanson,et al.  Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere , 1988 .

[100]  J. Farman,et al.  Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction , 1985, Nature.

[101]  M. Shapiro,et al.  Vertical mass- and trace constituent transports in the vicinity of jet streams , 1980 .

[102]  Fabrizio Ravegnani,et al.  Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results , 2013 .

[103]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[104]  Marc Rautenhaus,et al.  Geoscientific Model Development A web service based tool to plan atmospheric research flights , 2012 .

[105]  Monika Krautstrunk,et al.  The Transition From FALCON to HALO Era Airborne Atmospheric Research , 2012 .

[106]  V. L. Orkin,et al.  Scientific Assessment of Ozone Depletion: 2010 , 2010 .

[107]  Atmospheric Chemistry , 2005 .

[108]  J. Farman,et al.  LARGE LOSSES OF TOTAL OZONE IN ANTARCTICA , 1985 .