Strongly transitive automata and the Černý conjecture

The synchronization problem is investigated for a new class of deterministic automata called strongly transitive. An extension to unambiguous automata is also considered.

[1]  L. Dubuc,et al.  Sur Les Automates Circulaires et la Conjecture de Cerný , 1998, RAIRO Theor. Informatics Appl..

[2]  Jarkko Kari,et al.  Unambiguous Automata , 2008, Math. Comput. Sci..

[3]  Arturo Carpi,et al.  On Synchronizing Unambiguous Automata , 1988, Theor. Comput. Sci..

[4]  Jarkko Kari,et al.  Synchronizing Finite Automata on Eulerian Digraphs , 2003, MFCS.

[5]  P. FRANKL,et al.  An Extremal Problem for two Families of Sets , 1982, Eur. J. Comb..

[6]  Yves Césari Sur l'application du theoreme de Suschkewitsch a l'etude des codes rationnets complets , 1974 .

[7]  I. K. Rystsov,et al.  Almost optimal bound of recurrent word length for regular automata , 1995 .

[8]  David Eppstein,et al.  Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..

[9]  Flavio D'Alessandro,et al.  The Synchronization Problem for Strongly Transitive Automata , 2008, Developments in Language Theory.

[10]  Mikhail V. Volkov,et al.  Synchronizing generalized monotonic automata , 2005, Theor. Comput. Sci..

[11]  A. N. Trahtman The Černý Conjecture for Aperiodic Automata , 2005 .

[12]  J. Pin On two Combinatorial Problems Arising from Automata Theory , 1983 .

[13]  Václav Koubek,et al.  A Game of Composing Binary Relations , 1982, RAIRO Theor. Informatics Appl..

[14]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[15]  Jean-Éric Pin,et al.  Sur un Cas Particulier de la Conjecture de Cerny , 1978, ICALP.

[16]  Samuel Eilenberg Automata, Languages and Machines, Vol. B , 1976 .

[17]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.