Algebraic Multi-grid for Discrete Elliptic Second-Order Problems

This paper is devoted to the construction of Algebraic Multi-Grid (AMG) methods, which are especially suited for the solution of large sparse systems of algebraic equations arising from the finite element discretization of second-order elliptic boundary value problems on unstructured, fine meshes in two or three dimensions. The only information needed is recovered from the stiffness matrix. We present two types of coarsening algorithms based on the graph of the stiffness matrix. In some special cases of nested mesh refinement, we observe, that some geometrical version of the multi-grid method turns out to be a special case of our AMG algorithms. Finally, we apply our algorithms on two and three dimensional heat conduction problems in domains with complicated geometry (e.g. micro-scales), as well as to plane strain elasticity problems with jumping coefficients.

[1]  Marian Brezina,et al.  Algebraic Multigrid on Unstructured Meshes , 1994 .

[2]  W. Hackbusch,et al.  Adaptive composite finite elements for the solution of PDEs containing non-uniformly distributed micro-scales , 1996 .

[3]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[4]  S. Margenov,et al.  Optimal algebraic multilevel preconditioning for local refinement along a line , 1995, Numer. Linear Algebra Appl..

[5]  M. Griebel,et al.  Additive multilevel preconditioners based on bilinear interpolation, matrix-dependent geometric coarsening and algebraic multigrid coarsening for second-order elliptic PDEs , 1997 .

[6]  Michael Siegel,et al.  FRONTIERS IN APPLIED AND COMPUTATIONAL MATHEMATICS , .

[7]  W. Miranker,et al.  Acceleration by aggregation of successive approximation methods , 1982 .

[8]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[9]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[10]  Joseph E. Pasciak,et al.  New estimates for multilevel algorithms including the V-cycle , 1993 .

[11]  Christian Großmann,et al.  Numerik partieller Differentialgleichungen , 1994 .

[12]  Petr Vaněk Multigrid Method on Unstructured Meshes , 1994 .

[13]  Arnold Reusken,et al.  A Multigrid Method Based on Incomplete Gaussian Elimination , 1996, Numer. Linear Algebra Appl..

[14]  Petr Vanek,et al.  Two-Level Method on Unstructured Meshes with Convergence Rate Independent of the Coarse-Space Size , 1995 .

[15]  StübenKlaus Algebraic multigrid (AMG) , 1983 .