A Framework for Bounding Nonlocality of State Discrimination

[1]  Andrew M. Childs,et al.  Interpolatability distinguishes LOCC from separable von Neumann measurements , 2013, 1306.5992.

[2]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[3]  H. Lo,et al.  Entanglement monotones for W-type states , 2012 .

[4]  Hoi-Kwong Lo,et al.  Increasing entanglement monotones by separable operations. , 2012, Physical review letters.

[5]  S. Croke There is no non-local information in a single qubit , 2012 .

[6]  Hermann Kampermann,et al.  Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm , 2011 .

[7]  H. Lo,et al.  Increasing Entanglement by Separable Operations and New Monotones for W-type Entanglement , 2011, 1106.1208.

[8]  Scott M. Cohen When a quantum measurement can be implemented locally, and when it cannot , 2011 .

[9]  Scott M. Cohen Optimizing local protocols for implementing bipartite nonlocal unitary gates using prior entanglement and classical communication , 2010 .

[10]  Aharon Brodutch,et al.  Quantum discord, local operations, and Maxwell's demons , 2010 .

[11]  Somshubhro Bandyopadhyay,et al.  Entanglement cost of nonlocal measurements , 2008, 0809.2264.

[12]  Yuan Feng,et al.  Characterizing Locally Indistinguishable Orthogonal Product States , 2007, IEEE Transactions on Information Theory.

[13]  Yuan Feng,et al.  Distinguishability of Quantum States by Separable Operations , 2007, IEEE Transactions on Information Theory.

[14]  M. Koashi On the irreversibility of measurements of correlations , 2009 .

[15]  Scott M. Cohen Understanding entanglement as resource: locally distinguishing unextendible product bases , 2007, 0708.2396.

[16]  Masato Koashi,et al.  ‘Quantum Nonlocality without Entanglement’ in a Pair of Qubits , 2007, OSA Workshop on Entanglement and Quantum Decoherence.

[17]  Runyao Duan,et al.  Locally indistinguishable subspaces spanned by three-qubit unextendible product bases , 2007, 0708.3559.

[18]  M. Ying,et al.  Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. , 2006, Physical review letters.

[19]  Scott M. Cohen Local distinguishability with preservation of entanglement , 2006, quant-ph/0602026.

[20]  N. Cerf,et al.  Multipartite nonlocality without entanglement in many dimensions , 2006, quant-ph/0606227.

[21]  M. Murao,et al.  Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.

[22]  John Watrous,et al.  Bipartite subspaces having no bases distinguishable by local operations and classical communication. , 2005, Physical review letters.

[23]  Michael Nathanson Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases , 2004, quant-ph/0411110.

[24]  M. Ying,et al.  Optimal conclusive discrimination of two states can be achieved locally , 2004, quant-ph/0407120.

[25]  H. Fan Distinguishability and indistinguishability by local operations and classical communication. , 2004, Physical review letters.

[26]  Pingxing Chen,et al.  Distinguishing the elements of a full product basis set needs only projective measurements and classical communication , 2003, quant-ph/0311154.

[27]  S. D. Rinaldis Distinguishability of complete and unextendible product bases , 2003, quant-ph/0304027.

[28]  A. Chefles Condition for unambiguous state discrimination using local operations and classical communication , 2003, quant-ph/0302066.

[29]  Debasis Sarkar,et al.  Distinguishability of maximally entangled states , 2002, quant-ph/0205105.

[30]  M. Horodecki,et al.  Local indistinguishability: more nonlocality with less entanglement. , 2002, Physical review letters.

[31]  M. Hillery,et al.  Distinguishing two-qubit states using local measurements and restricted classical communication , 2002, quant-ph/0210179.

[32]  Pingxing Chen,et al.  Criterion for local distinguishability of arbitrary orthogonal states , 2002 .

[33]  P. Shor,et al.  Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.

[34]  L. Hardy,et al.  Nonlocality, asymmetry, and distinguishing bipartite states. , 2002, Physical review letters.

[35]  Dong Yang,et al.  Optimally conclusive discrimination of nonorthogonal entangled states by local operations and classical communications , 2002 .

[36]  A. Sen De,et al.  Distinguishability of Bell states. , 2001, Physical review letters.

[37]  Dong Yang,et al.  Optimal conclusive discrimination of two nonorthogonal pure product multipartite states through local operations , 2001, quant-ph/0103111.

[38]  L. Vaidman,et al.  Nonlocal variables with product-state eigenstates , 2001, quant-ph/0103084.

[39]  D. Markham,et al.  Optimal local discrimination of two multipartite pure states , 2001, quant-ph/0102073.

[40]  A. J. Short,et al.  Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.

[41]  Charles H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[42]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[43]  W. Ames Mathematics in Science and Engineering , 1999 .

[44]  C. Helstrom Quantum detection and estimation theory , 1969 .