Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations

In this article, we introduce two families of novel fractional $\theta$-methods by constructing some new generating functions to discretize the Riemann-Liouville fractional calculus operator $\mathit{I}^{\alpha}$ with a second order convergence rate. A new fractional BT-$\theta$ method connects the fractional BDF2 (when $\theta=0$) with fractional trapezoidal rule (when $\theta=1/2$), and another novel fractional BN-$\theta$ method joins the fractional BDF2 (when $\theta=0$) with the second order fractional Newton-Gregory formula (when $\theta=1/2$). To deal with the initial singularity, correction terms are added to achieve an optimal convergence order. In addition, stability regions of different $\theta$-methods when applied to the Abel equations of the second kind are depicted, which demonstrate the fact that the fractional $\theta$-methods are A($\vartheta$)-stable. Finally, numerical experiments are implemented to verify our theoretical result on the convergence analysis.

[1]  G. Karniadakis,et al.  Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions☆ , 2017, 1701.00996.

[2]  Xu Guo,et al.  A High Order Finite Difference Method for Tempered Fractional Diffusion Equations with Applications to the CGMY Model , 2018, SIAM J. Sci. Comput..

[3]  Yang Liu,et al.  Some second-order 𝜃 schemes combined with finite element method for nonlinear fractional cable equation , 2018, Numerical Algorithms.

[4]  Yubin Yan,et al.  Error estimates of a high order numerical method for solving linear fractional differential equations , 2017 .

[5]  Fawang Liu,et al.  Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..

[6]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[7]  Zhimin Zhang,et al.  Superconvergence Points for the Spectral Interpolation of Riesz Fractional Derivatives , 2019, J. Sci. Comput..

[8]  Hong Li,et al.  A two-grid finite element approximation for a nonlinear time-fractional Cable equation , 2015, 1512.08082.

[9]  Changpin Li,et al.  High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions , 2015, J. Sci. Comput..

[10]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[11]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[12]  Bangti Jin,et al.  Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..

[13]  Zhi-Zhong Sun,et al.  Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence , 2015, J. Comput. Phys..

[14]  C. Lubich,et al.  A Stability Analysis of Convolution Quadraturea for Abel-Volterra Integral Equations , 1986 .

[15]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[16]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[17]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[18]  Marc Weilbeer,et al.  Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background , 2005 .

[19]  Yang Liu,et al.  Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation , 2017, J. Comput. Phys..

[20]  Yang Liu,et al.  Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation , 2016 .

[21]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[22]  Hong Sun,et al.  Some temporal second order difference schemes for fractional wave equations , 2016 .

[23]  Jiwei Zhang,et al.  A Second-Order Scheme with Nonuniform Time Steps for a Linear Reaction-Subdiffusion Problem , 2018, Communications in Computational Physics.

[24]  C. Lubich Discretized fractional calculus , 1986 .

[25]  Chuanju Xu,et al.  Error Analysis of a High Order Method for Time-Fractional Diffusion Equations , 2016, SIAM J. Sci. Comput..

[26]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[27]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[28]  Bangti Jin,et al.  An analysis of the Crank–Nicolson method for subdiffusion , 2016, 1607.06948.