Natural arrangement of fiber-like aragonites and its impact on mechanical behavior of mollusk shells: A review.

[1]  Geerat J. Vermeij,et al.  A Natural History of Shells , 2021 .

[2]  X. Li,et al.  Thickness-dependent mechanical properties of nacre in Cristaria plicata shell: Critical role of interfaces , 2020, Journal of Materials Science & Technology.

[3]  K. Berent,et al.  Misorientation characteristics of interphase boundaries in Pinctada margaritifera shell , 2019, Materials Letters.

[4]  T. Ngo,et al.  A comprehensive review of selected biological armor systems – From structure-function to bio-mimetic techniques , 2019, Composite Structures.

[5]  Xiaodong Li,et al.  Dynamic self-strengthening of a bio-nanostructured armor - conch shell. , 2019, Materials science & engineering. C, Materials for biological applications.

[6]  Thomas H. Clarke,et al.  Spidroins and Silk Fibers of Aquatic Spiders , 2019, Scientific Reports.

[7]  S. Pinho,et al.  A novel aluminium/CFRP hybrid composite with a bio-inspired crossed-lamellar microstructure for preservation of structural integrity , 2019, Composites Science and Technology.

[8]  M. Kuntner,et al.  The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness , 2019, Communications Biology.

[9]  Frances Y. Su,et al.  Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs , 2019, Advanced materials.

[10]  Xiaodong Li,et al.  The Art of Curved Reinforcing in Biological Armors — Seashells , 2019, Journal of Bionic Engineering.

[11]  R. Ritchie,et al.  Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials , 2019, Progress in Materials Science.

[12]  H. Zahouani,et al.  Effects of cosmetic treatments on the morphology, biotribology and sensorial properties of a single human hair fiber , 2019, Wear.

[13]  S. Pinho,et al.  Failure mechanisms of biological crossed-lamellar microstructures applied to synthetic high-performance fibre-reinforced composites , 2019, Journal of the Mechanics and Physics of Solids.

[14]  D. L. Chen,et al.  Crack initiation and growth in a special quasi-sandwich crossed-lamellar structure in Cymbiola nobilis seashell. , 2019, Journal of the mechanical behavior of biomedical materials.

[15]  Jingjie Guo,et al.  Microstructure and Mechanical Properties of Bio‐Inspired Ti/Al/Al‐Cf Multilayered Composites , 2018, Advanced Engineering Materials.

[16]  P. Zavattieri,et al.  Crack twisting and toughening strategies in Bouligand architectures , 2018, International Journal of Solids and Structures.

[17]  D. L. Chen,et al.  Deformation and fracture behavior of a natural shell ceramic: Coupled effects of shell shape and microstructure. , 2018, Materials science & engineering. C, Materials for biological applications.

[18]  Xungai Wang,et al.  Biomimicking of Hierarchal Molluscan Shell Structure Via Layer by Layer 3D Printing , 2018, Industrial & Engineering Chemistry Research.

[19]  F. Barthelat,et al.  Tough and deformable glasses with bioinspired cross-ply architectures. , 2018, Acta biomaterialia.

[20]  Robert O Ritchie,et al.  On the Materials Science of Nature's Arms Race , 2018, Advanced materials.

[21]  D. L. Chen,et al.  A self-assembled smart architecture against drilling predation in a Pinctada maxima shell: protective mechanisms , 2018, Journal of Materials Science.

[22]  X. Li,et al.  Mechanical properties of crossed-lamellar structures in biological shells: A review. , 2017, Journal of the mechanical behavior of biomedical materials.

[23]  K. Shirai,et al.  Architecture of crossed-lamellar bivalve shells: the southern giant clam (Tridacna derasa, Röding, 1798) , 2017, Royal Society Open Science.

[24]  John P. Parmigiani,et al.  An experimental assessment of methods to predict crack deflection at an interface , 2017 .

[25]  Marc A. Meyers,et al.  Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications , 2017 .

[26]  Grace X. Gu,et al.  Hierarchically Enhanced Impact Resistance of Bioinspired Composites , 2017, Advanced materials.

[27]  K. Hagihara,et al.  Outstanding compressive creep strength in Cr/Ir-codoped (Mo0.85Nb0.15)Si2 crystals with the unique cross-lamellar microstructure , 2017, Scientific Reports.

[28]  P. Zavattieri,et al.  Twisting cracks in Bouligand structures. , 2017, Journal of the mechanical behavior of biomedical materials.

[29]  P. Zavattieri,et al.  Enhanced toughening of the crossed lamellar structure revealed by nanoindentation. , 2017, Journal of the mechanical behavior of biomedical materials.

[30]  Daolun L. Chen,et al.  Crystallographic texture of crossed-lamellar structure in Cymbiola nobilis shell , 2017 .

[31]  K. Hagihara,et al.  Development of unique cross-lamellar microstructure, resulting in the drastic increase in fracture toughness in Cr/Ir-codoped (Mo0.85Nb0.15)Si2 crystals , 2017 .

[32]  M. Meyers,et al.  Structure and mechanical behavior of human hair. , 2017, Materials science & engineering. C, Materials for biological applications.

[33]  Joshua A. Jones,et al.  Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure , 2017, Royal Society Open Science.

[34]  Abdul Halim,et al.  Comparative genomics of two jute species and insight into fibre biogenesis , 2017, Nature Plants.

[35]  Daolun L. Chen,et al.  Cymbiola nobilis shell: Toughening mechanisms in a crossed-lamellar structure , 2017, Scientific Reports.

[36]  Ping Zhang,et al.  Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota , 2016, Scientific Reports.

[37]  Zhihui Zhang,et al.  Study of the microstructure and mechanical properties of white clam shell. , 2016, Micron.

[38]  M. Willinger,et al.  New Crystallographic Relationships in Biogenic Aragonite: The Crossed-Lamellar Microstructures of Mollusks , 2016 .

[39]  Huajian Gao,et al.  Nanotwin-governed toughening mechanism in hierarchically structured biological materials , 2016, Nature Communications.

[40]  H. Cai,et al.  Fabrication, characterization and tensile property of a novel Ti2Ni/TiNi micro-laminated composite , 2016 .

[41]  Z. Zhang,et al.  Anisotropic mechanical behaviors and their structural dependences of crossed-lamellar structure in a bivalve shell. , 2016, Materials science & engineering. C, Materials for biological applications.

[42]  J. Bonarski,et al.  Irregularities of crystallographic orientation and residual stresses in the crossed-lamellar shell as a natural functionally graded material , 2015, Journal of The Royal Society Interface.

[43]  M. Meyers,et al.  The materials science of collagen. , 2015, Journal of the mechanical behavior of biomedical materials.

[44]  F. Barthelat,et al.  Architectured materials in engineering and biology: fabrication, structure, mechanics and performance , 2015 .

[45]  X. Li,et al.  Biological Self‐Arrangement of Fiber Like Aragonite and Its Effect on Mechanical Behavior of Veined rapa whelk Shell , 2015 .

[46]  Meihua Fan,et al.  Correction: Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell , 2015, PloS one.

[47]  R. Ritchie,et al.  The fracture mechanics of human bone: influence of disease and treatment. , 2015, BoneKEy reports.

[48]  X. Wang,et al.  Three-Point Bending Fracture Behavior of Single Oriented Crossed-Lamellar Structure in Scapharca broughtonii Shell , 2015, Materials.

[49]  Sridhar Santhanam,et al.  Analysis of toughening mechanisms in the Strombus gigas shell. , 2015, Journal of the mechanical behavior of biomedical materials.

[50]  Meihua Fan,et al.  In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell. , 2015, Journal of proteomics.

[51]  Robert O Ritchie,et al.  Bone as a Structural Material , 2015, Advanced healthcare materials.

[52]  Yueguang Wei,et al.  Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell , 2015 .

[53]  K. Ameyama,et al.  Tensile and flexural properties of multilayered metal/ intermetallics composites , 2015 .

[54]  Wen Yang,et al.  On the tear resistance of skin , 2015, Nature Communications.

[55]  Rui Li,et al.  Structural and Mechanical Characterization of Thermally Treated Conch Shells , 2015, JOM.

[56]  S. Chakraborty,et al.  A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste , 2015, Scientific Reports.

[57]  H. Ji,et al.  Microstructural Characteristic and its Relation to Mechanical Properties of Clinocardium californiense Shell , 2014 .

[58]  M. Habibi,et al.  Crack Propagation in Bamboo's Hierarchical Cellular Structure , 2014, Scientific Reports.

[59]  Wei Zhang,et al.  Fractal analysis of microstructure-related indentation toughness of Clinocardium californiense shell , 2014 .

[60]  M. Meyers,et al.  Organic interlamellar layers, mesolayers and mineral nanobridges: contribution to strength in abalone (Haliotis rufescence) nacre. , 2014, Acta biomaterialia.

[61]  Xiaodong Li,et al.  Plastic deformation enabled energy dissipation in a bionanowire structured armor. , 2014, Nano letters.

[62]  Benjamin Marie,et al.  The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas). , 2014, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[63]  Xiaodong Li,et al.  Multiscale hierarchical assembly strategy and mechanical prowess in conch shells (Busycon carica). , 2013, Journal of structural biology.

[64]  S. Santhanam,et al.  Strombus gigas inspired biomimetic ceramic composites via SHELL—Sequential Hierarchical Engineered Layer Lamination , 2013 .

[65]  F. Barthelat,et al.  The weak interfaces within tough natural composites: experiments on three types of nacre. , 2013, Journal of the mechanical behavior of biomedical materials.

[66]  D. Kisailus,et al.  Fracture Mitigation Strategies in Gastropod Shells , 2013 .

[67]  J. Mansot,et al.  Use of nanoindentation technique for a better understanding of the fracture toughness of Strombus gigas conch shell , 2013 .

[68]  Marc A. Meyers,et al.  Biological materials: Functional adaptations and bioinspired designs , 2012 .

[69]  M. Cotte,et al.  Structure and composition of the boundary zone between aragonitic crossed lamellar and calcitic prism layers in the shell of Concholepas concholepas (Mollusca, Gastropoda) , 2012 .

[70]  Bharat Bhushan,et al.  Hierarchical structure and mechanical properties of nacre: a review , 2012 .

[71]  P. Chang,et al.  Bamboo fiber and its reinforced composites: structure and properties , 2012, Cellulose.

[72]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[73]  B. Shi,et al.  Skin Collagen Fiber-Biotemplated Synthesis of Size-Tunable Silver Nanoparticle-Embedded Hierarchical Intertextures with Lightweight and Highly Efficient Microwave Absorption Properties , 2012 .

[74]  M. Willinger,et al.  Crystallographic relationships in the crossed lamellar microstructure of the shell of the gastropod Conus marmoreus. , 2012, Acta biomaterialia.

[75]  A. Baronnet,et al.  Crystallization in organo-mineral micro-domains in the crossed-lamellar layer of Nerita undata (Gastropoda, Neritopsina). , 2012, Micron.

[76]  Zhanjun Wu,et al.  NiCoCrAl/YSZ laminate composites fabricated by EB-PVD , 2011 .

[77]  Yuh J. Chao,et al.  Uncovering high-strain rate protection mechanism in nacre , 2011, Scientific reports.

[78]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[79]  X W Li,et al.  Structure and mechanical properties of Saxidomus purpuratus biological shells. , 2011, Journal of the mechanical behavior of biomedical materials.

[80]  H. Nagasawa,et al.  Crystallographic characterization of the crossed lamellar structure in the bivalve Meretrix lamarckii using electron beam techniques. , 2011, Journal of structural biology.

[81]  M. Meyers,et al.  Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus) , 2011 .

[82]  Guang-Ping Zhang,et al.  Microstructural Characterization and Hardness Behavior of a Biological Saxidomus purpuratus Shell , 2011 .

[83]  Q. Yuan,et al.  Hierarchical and intersectional microstructure of Graceful Fig shell , 2010 .

[84]  Toshihiro Nakamura,et al.  Crystalline arrangement and nanostructure of aragonitic crossed lamellar layers of the Meretrix lusoria shell. , 2010, Zoology.

[85]  Jie Zhao,et al.  Mechanical properties and structure of Haliotis discus hannai Ino and Hemifusus tuba conch shells: a comparative study , 2010 .

[86]  Eduardo Saiz,et al.  A novel biomimetic approach to the design of high-performance ceramic–metal composites , 2010, Journal of The Royal Society Interface.

[87]  Yasuaki Seki,et al.  The role of organic intertile layer in abalone nacre , 2009 .

[88]  John D. Currey,et al.  Further studies on the mechanical properties of mollusc shell material , 2009 .

[89]  J. Currey The effect of drying on the strength of mollusc shells , 2009 .

[90]  Paul K. Hansma,et al.  Plasticity and toughness in bone , 2009 .

[91]  D. Chateigner,et al.  Microstructure and crystallographic texture of Charonia lampas lampas shell. , 2008, Journal of structural biology.

[92]  Jie Zhao,et al.  The relationship between mechanical properties and crossed-lamellar structure of mollusk shells , 2008 .

[93]  David L Kaplan,et al.  Spider silks and their applications. , 2008, Trends in biotechnology.

[94]  D. Raabe,et al.  Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. , 2008, Journal of structural biology.

[95]  D. Raabe,et al.  Preferred crystallographic texture of alpha-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. , 2007, Acta biomaterialia.

[96]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[97]  Chris Holland,et al.  Natural and unnatural silks , 2007 .

[98]  K. Vecchio,et al.  Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study , 2006 .

[99]  T. Samata,et al.  Bivalve shell structure and organic matrix , 2006 .

[100]  Dierk Raabe,et al.  Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus , 2006 .

[101]  H. Kahn,et al.  Bioinspired micro-composite structure , 2005 .

[102]  Dierk Raabe,et al.  Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue , 2005 .

[103]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[104]  John D. Currey,et al.  Hierarchies in Biomineral Structures , 2005, Science.

[105]  Nuno M. Neves,et al.  Structure/mechanical behavior relationships in crossed-lamellar sea shells , 2005 .

[106]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[107]  A. Heuer,et al.  Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging , 2004 .

[108]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[109]  D. Hou,et al.  Conch shell structure and its effect on mechanical behaviors. , 2004, Biomaterials.

[110]  Christian Riekel,et al.  The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. , 2003, Biophysical journal.

[111]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[112]  E. Zolotoyabko,et al.  Microstructure of natural plywood-like ceramics: a study by high-resolution electron microscopy and energy-variable X-ray diffraction , 2003 .

[113]  M. Barthélémy,et al.  Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. , 2002, European journal of biochemistry.

[114]  J. Field,et al.  High speed liquid impact on crossed lamellar material from the shell Strombus gigas , 2002 .

[115]  M. Ansell,et al.  Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization , 2002 .

[116]  K. Vecchio,et al.  Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells , 2001 .

[117]  Daniel Chateigner,et al.  Mollusc shell microstructures and crystallographic textures , 2000 .

[118]  Y. Dauphin,et al.  Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda. , 2000, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[119]  R. Ballarini,et al.  Structural basis for the fracture toughness of the shell of the conch Strombus gigas , 2000, Nature.

[120]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[121]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[122]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[123]  S. Spearing,et al.  Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates , 1996, Journal of Materials Science.

[124]  R. Mullen,et al.  A biomimetic example of brittle toughening: (I) steady state multiple cracking , 1996 .

[125]  A. Evans,et al.  Interface Debonding and Fiber Cracking in Brittle Matrix Composites , 1989 .

[126]  P. C. Rieke,et al.  An Electron Microscopy Study of the Microstructure and Microarchitecture of the Strombus Gigas Shell , 1989 .

[127]  A. Heuer,et al.  Novel composite microstructure and mechanical behavior of mollusk shell , 1989 .

[128]  J. Newman,et al.  Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads , 1984 .

[129]  James C. Newman,et al.  Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels , 1982 .

[130]  J. Currey,et al.  Fracture in the crossed-lamellar structure ofConus shells , 1976 .

[131]  S. Gopalakannan,et al.  Mechanical characteristics of conch shell polymer matrix composites , 2018 .

[132]  M. Meyers,et al.  The organic interlamellar layer in abalone nacre: Formation and mechanical response. , 2016, Materials science & engineering. C, Materials for biological applications.

[133]  Xiaoxiang Wang,et al.  Structure and roles of the various layers in the shells of conch Conus litteratus , 2016 .

[134]  Tom Proulx,et al.  Mechanics of Biological Systems and Materials, Volume 2 , 2011 .

[135]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[136]  Seung Woo Lee,et al.  The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas. , 2007, Micron.

[137]  Jian-Guo Wang,et al.  Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite , 2004 .

[138]  Xiaodong Li,et al.  Micro/nanomechanical characterization of a natural nanocomposite material—the shell of Pectinidae , 2003 .

[139]  M Raspanti,et al.  Hierarchical structures in fibrillar collagens. , 2002, Micron.

[140]  J. G. Carter Skeletal biomineralization : patterns, processes, and evolutionary trends , 1991 .

[141]  E. Iversen,et al.  Shell strength of queen conch, Strombus gigas L.: aquaculture implications , 1988 .

[142]  James C. Newman,et al.  An empirical stress-intensity factor equation for the surface crack , 1981 .

[143]  James C. Newman,et al.  Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates , 1979 .

[144]  O. Bøggild The shell structure of the Mollusks , 1930 .