Modeling, Parametrization, and Diagnostics for Lithium-Ion Batteries with Automotive Applications

Lithium-ion (Li-ion) batteries are a promising source of electrical energy storage due to their improved energy and power densities coupled with potential cost savings compared to previous battery chemistries. However, significant research is needed to achieve a level of technical maturity that enables greater market penetration in the electrified vehicle segment. Energy density is currently an opportunity for improvement, and this shortcoming is compounded by the unavoidable aging process that shortens battery life by reductions in the energy and power that a battery can deliver. Model-based analysis may be used to identify and suggest mitigation strategies for the performance limiting factors. Most battery models are macroscopic and ignore the presence of interfaces between the solid and liquid phases. In these regions, known as the electrical double layer, the ionic concentration and potential vary rapidly. A better understanding of the electrical double layer leads to improved models for interfacial charge transfer. The potential variation within the electrical double layer may also modify the rate of side reactions that occur in close proximity to the electrode surface, when compared with macroscopic models. Model order reduction techniques applied to the partial differential equations of porous electrode theory leads to models that can be used for parameter estimation and large-scale aging simulations, but retain important aspects of electrochemistry. Since the developed models of lithium ion transport and potential variation across the battery unit cell are of low computational order, parameter estimation techniques may be incorporated to gain insight into the set of parameters that represent aging. Application of nonlinear least squares estimation is particularly powerful because the models exhibit dependence on electrochemical parameters that have physical meaning. Two case studies are presented for the reduced order modeling techniques that incorporate chemistry-specific phenomena. Model-based diagnostics are useful to understand the aging process, since in situ methods for measuring the aging process are often not feasible due to the small spatial dimensions and long time scales involved. Diagnostic methods are applied to characterize the process of capacity loss for the two studied cell types. Once the performance limiting mechanisms are understood, predictive models can be developed. To address the instance where loss of cyclable lithium is deemed the dominant capacity fade mode, a capacity fade model is developed based on a novel interpretation of sold-electrolyte interphase (SEI) layer growth. This dissertation contains the development of reduced-order models suitable for aging parameter estimation, an identification of the dominant capacity fade mechanisms via a model-based analysis for two types of commercially available Li-ion cells, a micro-scale model of the electrical double layer near each electrode, and a novel model of SEI growth. In future work, the SEI…

[1]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[2]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[3]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[4]  Inês L. Azevedo,et al.  The impact of federal incentives on the adoption of hybrid electric vehicles in the United States , 2013 .

[5]  T. M. Jahns,et al.  Improved nonlinear model for electrode voltage-current relationship for more consistent online battery system identification , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[6]  M. Safari,et al.  Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence , 2011 .

[7]  M. Safari,et al.  Simulation-Based Analysis of Aging Phenomena in a Commercial Graphite/LiFePO4 Cell , 2011 .

[8]  Mark W. Verbrugge,et al.  Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics , 2012 .

[9]  Christopher D. Rahn,et al.  Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries , 2010, IEEE Transactions on Control Systems Technology.

[10]  A. Terrence Conlisk,et al.  Essentials of Micro- and Nanofluidics: With Applications to the Biological and Chemical Sciences , 2012 .

[11]  Venkat Srinivasan,et al.  Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell , 2004 .

[12]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. , 1993 .

[13]  Marcello Canova,et al.  A Model Order Reduction Method for the Temperature Estimation in a Cylindrical Li-Ion Battery Cell , 2010 .

[14]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .

[15]  Doron Aurbach,et al.  On the Surface Chemistry of LiMO2 Cathode Materials (M = [ MnNi ] and [MnNiCo]): Electrochemical, Spectroscopic, and Calorimetric Studies , 2010 .

[16]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[17]  S. Dukhin,et al.  Electrokinetics at high ionic strength and hypothesis of the double layer with zero surface charge. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[18]  John Newman,et al.  Electrochemical Systems, 3rd Edition , 2004 .

[19]  Venkat R. Subramanian,et al.  Towards "Real-Time" Simulation of Physics Based Lithium Ion Battery Models , 2007 .

[20]  M. Alamgir,et al.  Recent progresses of LG Chem's large-format Li ion polymer batteries , 2011, 2011 IEEE Power and Energy Society General Meeting.

[21]  Stephen Yurkovich,et al.  A technique for dynamic battery model identification in automotive applications using linear parameter varying structures , 2009 .

[22]  Petr Novák,et al.  The influence of the local current density on the electrochemical exfoliation of graphite in lithium-ion battery negative electrodes , 2011 .

[23]  Kyung Yoon Chung,et al.  In situ X-ray diffraction studies of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge–discharge cycling , 2009 .

[24]  M. Safari,et al.  Life Simulation of a Graphite/LiFePO4 Cell under Cycling and Storage , 2012 .

[25]  V. Subramanian,et al.  Efficient Macro-Micro Scale Coupled Modeling of Batteries , 2005 .

[26]  Konstantin Konstantinov,et al.  Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source , 2004 .

[27]  Stephen Yurkovich,et al.  Linear parameter varying battery model identification using subspace methods , 2011 .

[28]  Martin Z. Bazant,et al.  Current-Voltage Relations for Electrochemical Thin Films , 2005, SIAM J. Appl. Math..

[29]  John Newman,et al.  Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries , 2009 .

[30]  T. Fuller,et al.  Influence of rib spacing in proton-exchange membrane electrode assemblies , 1996 .

[31]  M. N. Özişik Boundary value problems of heat conduction , 1989 .

[32]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[33]  Martin Z. Bazant,et al.  Electrochemical Thin Films at and above the Classical Limiting Current , 2005, SIAM J. Appl. Math..

[34]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[35]  Ralph E. White,et al.  Approximate Solutions for Galvanostatic Discharge of Spherical Particles I. Constant Diffusion Coefficient , 2001 .

[36]  Imposed currents in galvanic cells , 2009 .

[37]  Mark W. Verbrugge,et al.  Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Particle , 2011 .

[38]  Venkat Srinivasan,et al.  Optimization of Lithium Titanate Electrodes for High-Power Cells , 2006 .

[39]  M. Verbrugge,et al.  Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles , 2010 .

[40]  G. A. Parker,et al.  A variable interval variable step method for the solution of linear second order coupled differential equations , 1980 .

[41]  Giorgio Rizzoni,et al.  A Reduced-Order Model for the Thermal Dynamics of Li-Ion Battery Cells , 2010 .

[42]  Pei-sheng Ma,et al.  Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method , 2006 .

[43]  Eckhard Karden,et al.  Energy storage devices for future hybrid electric vehicles , 2007 .

[44]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[45]  Jay F. Whitacre,et al.  Electrochemical performance and kinetics of Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes and graphite anodes in low-temperature electrolytes , 2007 .

[46]  Chao-Yang Wang,et al.  Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling , 2002 .

[47]  Ralph E. White,et al.  Theoretical Analysis of Metal Hydride Electrodes Studies on Equilibrium Potential and Exchange Current Densily , 2013 .

[48]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[49]  Dawn Bernardi,et al.  Analysis of pulse and relaxation behavior in lithium-ion batteries , 2011 .

[50]  Ted Miller,et al.  Hybrid Vehicle Battery Technology - The Transition From NiMH To Li-Ion , 2009 .

[51]  Daniel P. Abraham,et al.  Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC , 2010 .

[52]  J. Van Mierlo,et al.  Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles , 2006 .

[53]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[54]  Stephen Yurkovich,et al.  Electro-thermal battery model identification for automotive applications , 2011 .

[55]  Seung M. Oh,et al.  Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells , 1996 .

[56]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background , 2004 .

[57]  I. Bloom,et al.  Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application , 2005 .

[58]  Ralph E. White,et al.  Theoretical Analysis of Stresses in a Lithium Ion Cell , 2010 .

[59]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[60]  B. V. R. Chowdari,et al.  Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li ( Ni1 / 3Co1 / 3Mn1 / 3 ) O 2 , 2004 .

[61]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[62]  M. Verbrugge,et al.  Stress Distribution within Spherical Particles Undergoing Electrochemical Insertion and Extraction , 2008 .

[63]  V. Subramanian,et al.  Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models , 2008 .

[64]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[65]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[66]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[67]  Ralph E. White,et al.  An Efficient Electrochemical–Thermal Model for a Lithium-Ion Cell by Using the Proper Orthogonal Decomposition Method , 2010 .

[68]  Petr Novák,et al.  Morphology of the Solid Electrolyte Interphase on Graphite in Dependency on the Formation Current , 2011 .

[69]  M. Verbrugge,et al.  Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses , 2010 .

[70]  Sangjin Park,et al.  Re-Deposition of Manganese Species on Spinel LiMn2O4 Electrode after Mn Dissolution , 2012 .

[71]  M. Verbrugge,et al.  Application of Hasselman’s Crack Propagation Model to Insertion Electrodes , 2010 .

[72]  Chaoyang Wang,et al.  Model Order Reduction of 1D Diffusion Systems Via Residue Grouping , 2008 .

[73]  Thomas W. Chapman,et al.  RESTRICTED DIFFUSION IN BINARY SOLUTIONS , 1973 .

[74]  D. Fleisch A student's guide to Maxwell's equations , 2008 .

[75]  Tao Zheng,et al.  The elevated temperature performance of the LiMn2O4/C system: Failure and solutions , 1999 .

[76]  L. Guzzella,et al.  Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell , 2010 .

[77]  Ilias Belharouak,et al.  Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications , 2004 .

[78]  M. Yoshio,et al.  Enhancing the elevated temperature performance of Li/LiMn2O4 cells by reducing LiMn2O4 surface area , 2000 .

[79]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[80]  B. Bhushan,et al.  Thermal diffusivity study of aged Li-ion batteries using flash method , 2010 .

[81]  Christopher S. Johnson,et al.  Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries , 2007 .

[82]  D. Aurbach,et al.  SIMULTANEOUS MEASUREMENTS AND MODELING OF THE ELECTROCHEMICAL IMPEDANCE AND THE CYCLIC VOLTAMMETRIC CHARACTERISTICS OF GRAPHITE ELECTRODES DOPED WITH LITHIUM , 1997 .

[83]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[84]  I. Bloom,et al.  Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes , 2011 .

[85]  H. Fathy,et al.  Reduction of an Electrochemistry-Based Li-Ion Battery Model via Quasi-Linearization and Padé Approximation , 2011 .

[86]  Ross Taylor,et al.  Multicomponent mass transfer , 1993 .

[87]  Kevin L. Gering,et al.  Differential voltage analyses of high-power lithium-ion cells: 3. Another anode phenomenon , 2005 .

[88]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification , 2004 .

[89]  Jun-ichi Yamaki,et al.  LiFePO4 storage at room and elevated temperatures , 2003 .

[90]  M. Verbrugge,et al.  Modeling Lithium Intercalation of Single‐Fiber Carbon Microelectrodes , 1996 .

[91]  N. Choi,et al.  Effect of SEI on Capacity Losses of Spinel Lithium Manganese Oxide/Graphite Batteries Stored at 60°C , 2010 .

[92]  J. Newman,et al.  Double‐Layer Capacitance in a Dual Lithium Ion Insertion Cell , 1999 .

[93]  Ryoji Marubayashi,et al.  Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries , 2002 .

[94]  T. Matsushima,et al.  Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells , 2003 .

[95]  Giovanni Fiengo,et al.  Lithium-ion battery state of charge estimation with a Kalman Filter based on a electrochemical model , 2008, 2008 IEEE International Conference on Control Applications.

[96]  Ralph E. White,et al.  Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations , 2009 .

[97]  Margret Wohlfahrt-Mehrens,et al.  Aging mechanisms of lithium cathode materials , 2004 .

[98]  John Newman,et al.  Double layer structure at the limiting current , 1967 .

[99]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[100]  D. Sauer,et al.  Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries , 2011 .

[101]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[102]  Mohammadhosein Safari,et al.  Modeling of a Commercial Graphite/LiFePO4 Cell , 2011 .

[103]  V. Subramanian,et al.  Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions , 2009 .

[104]  H. Kooijman,et al.  COMPOSITION DERIVATIVES OF ACTIVITY COEFFICIENT MODELS (FOR THE ESTIMATION OF THERMODYNAMIC FACTORS IN DIFFUSION) , 1991 .

[105]  L. Guzzella,et al.  Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries , 2010 .

[106]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[107]  J. Ibarra,et al.  Non-Arrhenius conductivity in the fast ionic conductor Li_(0.05)La_(0.5)TiO_(3): reconciling spin-lattice and electrical-conductivity relaxations , 1997 .

[108]  Giovanni Fiengo,et al.  Experimental identification and validation of an electrochemical model of a lithium-ion battery , 2009, 2009 European Control Conference (ECC).

[109]  Carlos León,et al.  Temperature dependence of the ionic conductivity in Li3xLa2/3−xTiO3: Arrhenius versus non-Arrhenius , 2003 .

[110]  Dmitry Bedrov,et al.  Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. , 2012, The journal of physical chemistry. A.

[111]  K. Zaghib,et al.  Dual active material composite cathode structures for Li-ion batteries , 2008 .

[112]  J. Paulsen,et al.  Numerical simulation of porous networks in relation to battery electrodes and separators , 2003 .

[113]  Ralph E. White,et al.  A Boundary Condition for Porous Electrodes , 2004 .

[114]  J. Newman,et al.  THE POLARIZED, DIFFUSE DOUBLE LAYER , 1965 .

[115]  Christopher S. Johnson,et al.  Structural and Electrochemical Characterization of Composite Layered-Spinel Electrodes Containing Ni and Mn for Li-Ion Batteries , 2009 .

[116]  G. Burstein,et al.  A hundred years of Tafel’s Equation: 1905–2005 , 2005 .

[117]  Yang Yong,et al.  Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature , 2009 .

[118]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[119]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[120]  Paul Denholm,et al.  Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services. , 2009, Environmental science & technology.

[121]  John N. Harb,et al.  Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .

[122]  Giorgio Rizzoni,et al.  Principles and Applications of Electrical Engineering , 1993 .

[123]  Tsutomu Ohzuku,et al.  An overview of positive-electrode materials for advanced lithium-ion batteries , 2007 .

[124]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[125]  Venkatasailanathan Ramadesigan,et al.  Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks , 2011 .

[126]  Shung-Ik Lee,et al.  Modeling on lithium insertion of porous carbon electrodes , 2002 .

[127]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[128]  Charles W. Monroe,et al.  Direct in situ measurements of Li transport in Li-ion battery negative electrodes , 2009 .

[129]  Venkat Srinivasan,et al.  Batteries for Vehicular Applications , 2008 .

[130]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[131]  M. J. Moran,et al.  Fundamentals of Engineering Thermodynamics , 2014 .

[132]  Gerardine G. Botte,et al.  Comparison of finite difference and control volume methods for solving differential equations , 2000 .

[133]  Zhiwei Xu,et al.  The convergence of subspace trust region methods , 2009, J. Comput. Appl. Math..

[134]  Ralph E. White,et al.  Online Estimation of the State of Charge of a Lithium Ion Cell , 2006 .

[135]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[136]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[137]  V. Subramanian,et al.  Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-ion Battery Models , 2009, ECS Transactions.

[138]  Ralph E. White,et al.  Parameter Estimation and Life Modeling of Lithium-Ion Cells , 2008 .

[139]  Kevin L. Gering,et al.  Differential voltage analyses of high-power lithium-ion cells: 2. Applications , 2005 .

[140]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[141]  P. Bruce,et al.  Correlating Capacity Loss of Stoichiometric and Nonstoichiometric Lithium Manganese Oxide Spinel Electrodes with Their Structural Integrity , 1999 .

[142]  Koji Hayashi,et al.  A Study on the Cause of Deterioration in Float-Charged Lithium-Ion Batteries Using LiMn2O4 as a Cathode Active Material , 2011 .

[143]  K. Hayamizu Temperature Dependence of Self-Diffusion Coefficients of Ions and Solvents in Ethylene Carbonate, Propylene Carbonate, and Diethyl Carbonate Single Solutions and Ethylene Carbonate + Diethyl Carbonate Binary Solutions of LiPF6 Studied by NMR , 2012 .

[144]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[145]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[146]  Petr Novák,et al.  Modeling of the charge–discharge dynamics of lithium manganese oxide electrodes for lithium-ion batteries , 2001 .

[147]  Long Cai,et al.  Life modeling of a lithium ion cell with a spinel-based cathode , 2013 .

[148]  Karen E. Thomas-Alyea Modeling Resistive-Reactant and Phase-Change Materials in Battery Electrodes , 2008 .

[149]  M. Broussely,et al.  Aging mechanism in Li ion cells and calendar life predictions , 2001 .

[150]  Ann Marie Sastry,et al.  Numerical Simulation of the Effect of the Dissolution of LiMn2O4 Particles on Li-Ion Battery Performance , 2011 .

[151]  Chaoyang Wang,et al.  Modeling of Li-ion Battery Performance in Hybrid Electric Vehicles , 2009 .

[152]  Chaoyang Wang,et al.  Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles , 2006 .

[153]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[154]  Ralph E. White,et al.  Capacity fade analysis of a lithium ion cell , 2008 .