Low-Temperature Synthesis of Cu-Doped Anatase TiO2 Nanostructures via Liquid Phase Deposition Method for Enhanced Photocatalysis

Titanium dioxide (TiO2) photocatalysis can harness the energy from sunlight, providing a solution to many green- and energy-related problems. In this study, we aimed to produce Cu doped TiO2 (Cu-TiO2) structures at a low temperature (~70 °C) under atmospheric pressure based on liquid phase deposition. The products prepared with Cu nitrate exhibited anatase-phase TiO2 with the presence of Cu, and the particles showed a waxberry-like structure. Changing the Cu nitrate concentration allowed control of the atomic concentration; we confirmed ~1.3 atm.% of Cu ions in the product when we applied 10 mM in the precursor solution. By doping Cu, the light absorption edge shifted to 440 nm (~2.9 eV), and we proved the photocatalytic reaction through action spectral measurement. We observed the decomposition of acetaldehyde into CO2 on Cu-TiO2 photocatalysts, which produced optimized improvements in photocatalytic activity at Cu dopant levels between 0.2 and 0.4 atm.%. This study demonstrates that the liquid phase deposition technique can be used for doping metallic ions into TiO2, which shows promise for preparing novel and unique nanomaterials as visible light photocatalysts.

[1]  Linghui He,et al.  Recent progress on crack pattern formation in thin films. , 2022, Soft matter.

[2]  H. Oya,et al.  Optimization of hydrolysis temperature in liquid phase deposition for TiO2 photocatalysis , 2022, Japanese Journal of Applied Physics.

[3]  Chien-Yen Chen,et al.  Characteristics of Doped TiO2 Nanoparticle Photocatalysts Prepared by the Rotten Egg White , 2022, Materials.

[4]  M. Sultana,et al.  A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation , 2022, Journal of Water Process Engineering.

[5]  A. Nakaruk,et al.  Enhanced Photocatalytic and Photokilling Activities of Cu-Doped TiO2 Nanoparticles , 2022, Nanomaterials.

[6]  V. Pierro,et al.  Emergence and Evolution of Crystallization in TiO2 Thin Films: A Structural and Morphological Study , 2021, Nanomaterials.

[7]  A. K. Tyagi,et al.  Selective CO2 Photoreduction with Cu-Doped TiO2 Photocatalyst: Delineating the Crucial Role of Cu-Oxidation State and Oxygen Vacancies , 2021 .

[8]  G. Spoto,et al.  Morphology, Surface Structure and Water Adsorption Properties of TiO2 Nanoparticles: A Comparison of Different Commercial Samples , 2020, Molecules.

[9]  A. Agafonov,et al.  Doped TiO2: the effect of doping elements on photocatalytic activity , 2020 .

[10]  D. Aoki,et al.  Analysis of Adsorption and Decomposition of Odour and Tar Components in Tobacco Smoke on Non-Woven Fabric-Supported Photocatalysts , 2020, Catalysts.

[11]  I. Parkin,et al.  Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and Experiment , 2020, ACS applied materials & interfaces.

[12]  S. Chiarakorn,et al.  Enhanced Visible Light Photocatalytic Activity of N and Ag Doped and Co-Doped TiO2 Synthesized by Using an In-Situ Solvothermal Method for Gas Phase Ammonia Removal , 2020, Catalysts.

[13]  M. Piccinini,et al.  Diffusion Mechanisms for Ions over Hydroxylated Surfaces: Cu on γ-Al2O3 , 2019, The Journal of Physical Chemistry C.

[14]  M. Nolan,et al.  Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity , 2018, Applied Sciences.

[15]  Tz-Feng Lin,et al.  Photocatalytic performance of Cu-doped TiO 2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment , 2018 .

[16]  K. Takanabe Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design , 2017 .

[17]  S. Roy,et al.  Structure sensitive photocatalytic reduction of nitroarenes over TiO2 , 2017, Scientific Reports.

[18]  Z. Deng,et al.  Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells , 2017 .

[19]  F. Huang,et al.  Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst , 2016 .

[20]  L. Guojing,et al.  Effective water splitting using CuO x /TiO 2 composite films: Role of Cu species and content in hydrogen generation , 2016 .

[21]  M. Louhi-Kultanen,et al.  Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light , 2016, Journal of Materials Science: Materials in Electronics.

[22]  B. Liu,et al.  Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution , 2015, Nanoscale Research Letters.

[23]  C. Muryn,et al.  Photoelectron Spectroscopy Study of Stoichiometric and Reduced Anatase TiO2(101) Surfaces: The Effect of Subsurface Defects on Water Adsorption at Near-Ambient Pressures , 2015 .

[24]  Bruce A. Parkinson,et al.  Deep and Shallow TiO2 Gap States on Cleaved Anatase Single Crystal (101) Surfaces, Nanocrystalline Anatase Films, and ALD Titania Ante and Post Annealing , 2015 .

[25]  S. Kawata,et al.  Individual TiO2 nanocrystals probed by resonant Rayleigh scattering spectroscopy , 2014 .

[26]  P. Flewitt,et al.  Chapter 5:Raman measurements of stress in films and coatings , 2014 .

[27]  Minoru Mizuhata,et al.  Ionic Equilibria for Synthesis of TiO2 Thin Films by the Liquid-Phase Deposition , 2014 .

[28]  A. Mohamed,et al.  Hydrothermal Synthesis and Characterisation of Cu Doped TiO2 Nanotubes for Photocatalytic Degradation of Methyl Orange , 2014 .

[29]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[30]  Aron Walsh,et al.  Band alignment of rutile and anatase TiO 2 , 2013 .

[31]  A. Corma,et al.  Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids , 2012 .

[32]  G. Palmisano,et al.  Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis , 2012 .

[33]  A. Duţă,et al.  Photocatalytic activity and stability of TiO2 and WO3 thin films , 2012 .

[34]  K. Hashimoto,et al.  Cu(II) Oxide Amorphous Nanoclusters Grafted Ti3+ Self-Doped TiO2: An Efficient Visible Light Photocatalyst , 2011 .

[35]  K. Domen,et al.  Toward Visible Light Response: Overall Water Splitting Using Heterogeneous Photocatalysts , 2011 .

[36]  S. Feng,et al.  Hydrothermal and Solvothermal Syntheses , 2011 .

[37]  C. Karunakaran,et al.  Cu-doped TiO(2) nanoparticles for photocatalytic disinfection of bacteria under visible light. , 2010, Journal of colloid and interface science.

[38]  K. Hashimoto,et al.  Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst. , 2010, Journal of the American Chemical Society.

[39]  Tae Geun Kim,et al.  Synthesis of Cu-Doped TiO2 Nanorods with Various Aspect Ratios and Dopant Concentrations , 2010 .

[40]  R. López,et al.  PHOTOPHYSICAL AND PHOTOCATALYTIC PROPERTIES OF NANOSIZED COPPER-DOPED TITANIA SOL-GEL CATALYSTS , 2009 .

[41]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[42]  N. Dimitrijević,et al.  Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO−TiO2 Nanocomposites , 2008 .

[43]  X. Xia,et al.  Structure and photocatalytic properties of copper-doped rutile TiO2 prepared by a low-temperature process , 2008 .

[44]  G. Colón,et al.  Cu-doped TiO2 systems with improved photocatalytic activity , 2006 .

[45]  Jiaguo Yu,et al.  Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers , 2006 .

[46]  J. Yates,et al.  TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer , 2005 .

[47]  Jarnuzi Gunlazuardi,et al.  Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method , 2005 .

[48]  K. McGuigan,et al.  Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. , 2005, Water research.

[49]  Fu-hui Wang,et al.  Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering , 2004 .

[50]  P. Löbmann,et al.  TiO2 photocatalysts deposited on fiber substrates by liquid phase deposition , 2004 .

[51]  P. Nascente,et al.  Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2 Catalysts , 2001 .

[52]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[53]  J. Herrmann,et al.  Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants , 1999 .

[54]  R. Bauer,et al.  Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide. , 1999, Chemosphere.

[55]  M. Mizuhata,et al.  Preparation and characterization of Au-dispersed TiO2 thin films by a liquid-phase deposition method , 1996 .

[56]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[57]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[58]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .