Atomic decompositions for tensor products and polynomial spaces

Abstract We study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗ s , μ n X , for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X.

[1]  R. Aron,et al.  Polynomial approximation of differentiable functions on Banach spaces. , 1980 .

[2]  Schauder Bases for Symmetric Tensor Products , 2005 .

[3]  R. Ryan,et al.  Geometric Theory of Spaces of Integral Polynomials and Symmetric Tensor Products , 2001 .

[4]  F. Blasco Complementation in spaces of symmetric tensor products and polynomials , 1996 .

[5]  M. Maestre,et al.  Unconditional Basis and Gordon–Lewis Constants for Spaces of Polynomials , 2001 .

[6]  Seán Dineen,et al.  Complex Analysis on Infinite Dimensional Spaces , 1999 .

[7]  K. Floret NATURAL NORMS ON SYMMETRIC TENSOR PRODUCTS OF NORMED SPACES , 1997 .

[8]  M. Schottenloher,et al.  Compact holomorphic mappings on Banach spaces and the approximation property , 1974 .

[9]  S. Dineen,et al.  Banach subspaces of spaces of holomorphic functions and related topics , 1995 .

[10]  Christopher Heil,et al.  Perturbations of Banach Frames and Atomic Decompositions , 2009 .

[11]  Santiago Muro,et al.  Hypercyclic convolution operators on Frechet spaces of analytic functions , 2007 .

[12]  D. Carando,et al.  Duality, reflexivity and atomic decompositions in Banach spaces , 2009 .

[13]  Christopher Heil,et al.  Perturbation of Banach Frames and Atomic Decomposition , 1997 .

[14]  Santiago Muro,et al.  Coherent sequences of polynomial ideals on Banach spaces , 2009 .

[15]  Ver'onica Dimant,et al.  Bases in Spaces of Multilinear Forms over Banach Spaces , 1996 .

[16]  R. Aron,et al.  Weakly continuous mappings on Banach spaces , 1983 .

[17]  Jorge Mujica,et al.  Complex analysis in Banach spaces , 1986 .

[18]  B. Gelbaum,et al.  Bases of tensor products of Banach spaces , 1961 .

[19]  A. Pełczyński,et al.  Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basic , 1971 .

[20]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[21]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[22]  D. Carando,et al.  Duality in Spaces of Nuclear and Integral Polynomials , 2000 .

[23]  S. Dineen Holomorphy types on a Banach spaces , 1971 .