Antimalarial drug discovery: progress and approaches

[1]  Victoria C. Corey,et al.  Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation , 2023, Nature Communications.

[2]  E. Winzeler,et al.  Cytoplasmic isoleucyl tRNA synthetase as an attractive multistage antimalarial drug target , 2023, Science Translational Medicine.

[3]  H. Zhang,et al.  Mitigating the risk of antimalarial resistance via covalent dual-subunit inhibition of the Plasmodium proteasome , 2023, Cell chemical biology.

[4]  A. Cowman,et al.  Optimization of 2,3-Dihydroquinazolinone-3-carboxamides as Antimalarials Targeting PfATP4 , 2023, Journal of medicinal chemistry.

[5]  E. Winzeler,et al.  Development of Potent and Highly Selective Epoxyketone-based Plasmodium Proteasome Inhibitors. , 2023, Chemistry.

[6]  J. Bailey,et al.  Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda , 2022, Nature Communications.

[7]  Manuel de Lera Ruiz,et al.  The Invention of WM382, a Highly Potent PMIX/X Dual Inhibitor toward the Treatment of Malaria. , 2022, ACS medicinal chemistry letters.

[8]  Richard D. Taylor,et al.  Discovery and Characterization of Potent, Efficacious, Orally Available Antimalarial Plasmepsin X Inhibitors and Preclinical Safety Assessment of UCB7362 , 2022, Journal of medicinal chemistry.

[9]  K. Kirk,et al.  A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin , 2022, Nature Communications.

[10]  E. Winzeler,et al.  Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance , 2022, Nature Communications.

[11]  D. Havlir,et al.  First Demonstration Project of Long-Acting Injectable Antiretroviral Therapy for Persons With and Without Detectable Human Immunodeficiency Virus (HIV) Viremia in an Urban HIV Clinic , 2022, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[12]  T. Mzilahowa,et al.  Marked aggravation of pyrethroid resistance in major malaria vectors in Malawi between 2014 and 2021 is partly linked with increased expression of P450 alleles , 2022, BMC Infectious Diseases.

[13]  R. Baggaley,et al.  Long‐acting injectable cabotegravir: implementation science needed to advance this additional HIV prevention choice , 2022, Journal of the International AIDS Society.

[14]  J. Vendôme,et al.  Design, Synthesis, and Optimization of Macrocyclic Peptides as Species-Selective Antimalaria Proteasome Inhibitors. , 2022, Journal of medicinal chemistry.

[15]  E. Winzeler,et al.  Reaction hijacking of tyrosine tRNA synthetase as a whole-of-life-cycle antimalarial strategy , 2022, Science.

[16]  T. Lefèvre,et al.  Using an antimalarial in mosquitoes overcomes Anopheles and Plasmodium resistance to malaria control strategies , 2022, PLoS pathogens.

[17]  Marie-Esther N’Dri,et al.  The Phosphodiesterase Inhibitor Tadalafil Promotes Splenic Retention of Plasmodium falciparum Gametocytes in Humanized Mice , 2022, Frontiers in Cellular and Infection Microbiology.

[18]  Akash Khandelwal,et al.  Translation of liver stage activity of M5717, a Plasmodium elongation factor 2 inhibitor: from bench to bedside , 2022, Malaria journal.

[19]  Xin Jiang An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions , 2022, Proteins.

[20]  C. Sadler,et al.  Malarial PI4K inhibitor induced diaphragmatic hernias in rat: Potential link with mammalian kinase inhibition , 2022, Birth defects research.

[21]  A. Hussain,et al.  Target-Based Virtual Screening of Natural Compounds Identifies a Potent Antimalarial With Selective Falcipain-2 Inhibitory Activity , 2022, Frontiers in Pharmacology.

[22]  C. Plowe Malaria chemoprevention and drug resistance: a review of the literature and policy implications , 2022, Malaria journal.

[23]  Vito Baraka,et al.  Therapeutic efficacy of artemether-lumefantrine, artesunate-amodiaquine and dihydroartemisinin-piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in Sub-Saharan Africa: A systematic review and meta-analysis , 2022, PloS one.

[24]  D. Fidock,et al.  The RTS,S vaccine—a chance to regain the upper hand against malaria? , 2022, Cell.

[25]  A. Borkhardt,et al.  Synthesis, Antiplasmodial, and Antileukemia Activity of Dihydroartemisinin–HDAC Inhibitor Hybrids as Multitarget Drugs , 2022, Pharmaceuticals.

[26]  F. Gamo,et al.  Discovery and Preclinical Pharmacology of INE963, a Potent and Fast-Acting Blood-Stage Antimalarial with a High Barrier to Resistance and Potential for Single-Dose Cures in Uncomplicated Malaria , 2022, Journal of medicinal chemistry.

[27]  G. Labesse,et al.  A Histone Deacetylase (HDAC) Inhibitor with Pleiotropic In Vitro Anti-Toxoplasma and Anti-Plasmodium Activities Controls Acute and Chronic Toxoplasma Infection in Mice , 2022, International journal of molecular sciences.

[28]  Yan Ding,et al.  Drug Repurposing of Quisinostat to Discover Novel Plasmodium falciparum HDAC1 Inhibitors with Enhanced Triple-Stage Antimalarial Activity and Improved Safety. , 2022, Journal of medicinal chemistry.

[29]  M. Eppstein,et al.  Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance , 2022, PLoS pathogens.

[30]  William J. Godinez,et al.  Design of potent antimalarials with generative chemistry , 2022, Nature Machine Intelligence.

[31]  S. Schreiber,et al.  Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase , 2022, Nature communications.

[32]  D. Soldati-Favre,et al.  Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets , 2021, PLoS pathogens.

[33]  Kwaku Poku Asante,et al.  Hepatic safety and tolerability of cipargamin (KAE609), in adult patients with Plasmodium falciparum malaria: a randomized, phase II, controlled, dose-escalation trial in sub-Saharan Africa , 2021, Malaria journal.

[34]  J. McCarthy,et al.  Scoping Review of Antimalarial Drug Candidates in Phase I and II Drug Development , 2021, Antimicrobial agents and chemotherapy.

[35]  E. Beitz,et al.  Discovery and Development of Inhibitors of the Plasmodial FNT-Type Lactate Transporter as Novel Antimalarials , 2021, Pharmaceuticals.

[36]  E. Winzeler,et al.  Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome , 2021, Proceedings of the National Academy of Sciences.

[37]  E. Winzeler,et al.  Prioritization of Molecular Targets for Antimalarial Drug Discovery , 2021, ACS infectious diseases.

[38]  A. Dicko,et al.  Combining malaria vaccination with chemoprevention: a promising new approach to malaria control , 2021, Malaria journal.

[39]  Chuangye Yan,et al.  Structural characterization of the Plasmodium falciparum lactate transporter PfFNT alone and in complex with antimalarial compound MMV007839 reveals its inhibition mechanism , 2021, PLoS biology.

[40]  Kwaku Poku Asante,et al.  Efficacy of Cipargamin (KAE609) in a Randomized, Phase II Dose-Escalation Study in Adults in Sub-Saharan Africa With Uncomplicated Plasmodium falciparum Malaria , 2021, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[41]  Y. Yuthavong,et al.  New Insights into Antimalarial Chemopreventive Activity of Antifolates , 2021, bioRxiv.

[42]  M. Huynen,et al.  Monoclonal antibodies block transmission of genetically diverse Plasmodium falciparum strains to mosquitoes , 2021, NPJ vaccines.

[43]  P. Ringwald,et al.  Current and emerging strategies to combat antimalarial resistance , 2021, Expert review of anti-infective therapy.

[44]  F. Gosselet,et al.  Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. , 2021, Current medicinal chemistry.

[45]  J. Bailey,et al.  Associations between Varied Susceptibilities to PfATP4 Inhibitors and Genotypes in Ugandan Plasmodium falciparum Isolates , 2021, Antimicrobial agents and chemotherapy.

[46]  A. Crisanti,et al.  Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field , 2021, Nature Communications.

[47]  E. Winzeler,et al.  Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention , 2021, Cell chemical biology.

[48]  R. Price,et al.  The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to Plasmodium falciparum parasite resistance , 2021, Science Translational Medicine.

[49]  E. Schmitt,et al.  High Prevalence of Plasmodium falciparum K13 Mutations in Rwanda Is Associated With Slow Parasite Clearance After Treatment With Artemether-Lumefantrine , 2021, The Journal of infectious diseases.

[50]  M. Yogavel,et al.  Structural analyses of the malaria parasite aminoacyl‐tRNA synthetases provide new avenues for antimalarial drug discovery , 2021, Protein science : a publication of the Protein Society.

[51]  L. Cui,et al.  Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook , 2021, International journal for parasitology. Drugs and drug resistance.

[52]  S. Prigge,et al.  Dephospho‐CoA kinase, a nuclear‐encoded apicoplast protein, remains active and essential after Plasmodium falciparum apicoplast disruption , 2021, The EMBO journal.

[53]  H. Tinto,et al.  A randomized, double-blind, phase 2b study to investigate the efficacy, safety, tolerability and pharmacokinetics of a single-dose regimen of ferroquine with artefenomel in adults and children with uncomplicated Plasmodium falciparum malaria , 2021, Malaria Journal.

[54]  H. Kumalo,et al.  A consequence of drug targeting of aminoacyl‐tRNA synthetases in Mycobacteriumtuberculosis , 2021, Chemical biology & drug design.

[55]  D. Fidock,et al.  Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. , 2021, Trends in parasitology.

[56]  T. Egan,et al.  Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. , 2021, Accounts of chemical research.

[57]  David M. Shackleford,et al.  Potent Antimalarials with Development Potential Identified by Structure-Guided Computational Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series. , 2021, Journal of medicinal chemistry.

[58]  L. Guddat,et al.  Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity. , 2021, European journal of medicinal chemistry.

[59]  M. Zaki,et al.  QSAR and Pharmacophore Modeling of Nitrogen Heterocycles as Potent Human N-Myristoyltransferase (Hs-NMT) Inhibitors , 2021, Molecules.

[60]  Stephanie C. Kabeche,et al.  Nonbisphosphonate inhibitors of Plasmodium falciparum FPPS/GGPPS. , 2021, Bioorganic & medicinal chemistry letters.

[61]  E. Winzeler,et al.  MalDA, Accelerating Malaria Drug Discovery , 2021, Trends in parasitology.

[62]  A. Rosanas-Urgell,et al.  Chemoprotective Antimalarial Activity of P218 against Plasmodium falciparum: A Randomized, Placebo-Controlled Volunteer Infection Study , 2021, The American journal of tropical medicine and hygiene.

[63]  D. Kyle,et al.  Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro , 2021, Scientific Reports.

[64]  Zbynek Bozdech,et al.  Artemisinin-resistant K13 mutations rewire Plasmodium falciparum’s intra-erythrocytic metabolic program to enhance survival , 2021, Nature Communications.

[65]  B. Rahimi,et al.  Endectocides as a complementary intervention in the malaria control program: a systematic review , 2021, Systematic Reviews.

[66]  S. Schreiber,et al.  Structural basis of malaria parasite phenylalanine tRNA-synthetase inhibition by bicyclic azetidines , 2021, Nature communications.

[67]  P. Rosenthal,et al.  Development of a highly selective Plasmodium falciparum proteasome inhibitor with anti-malaria activity in humanized mice. , 2021, Angewandte Chemie.

[68]  P. Kesharwani,et al.  Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity , 2020, Journal of biomaterials science. Polymer edition.

[69]  D. Schade,et al.  Pentafluoro‐3‐hydroxy‐pent‐2‐en‐1‐ones Potently Inhibit FNT‐Type Lactate Transporters from all Five Human‐Pathogenic Plasmodium Species , 2020, ChemMedChem.

[70]  D. Hartl,et al.  Genetic background and PfKelch13 affect artemisinin susceptibility of PfCoronin mutants in Plasmodium falciparum , 2020, PLoS genetics.

[71]  C. Amaratunga,et al.  Triple Artemisinin-Based Combination Therapies for Malaria - A New Paradigm? , 2020, Trends in parasitology.

[72]  Jorgen W. Nelson,et al.  A Potent Anti-Malarial Human Monoclonal Antibody Targets Circumsporozoite Protein Minor Repeats and Neutralizes Sporozoites in the Liver. , 2020, Immunity.

[73]  D. Fidock,et al.  Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. , 2020, Annual review of microbiology.

[74]  M. Cassera,et al.  Probing the B- & C-rings of the antimalarial tetrahydro-β-carboline MMV008138 for steric and conformational constraints. , 2020, Bioorganic & medicinal chemistry letters.

[75]  D. Fidock,et al.  Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda , 2020, Nature Medicine.

[76]  Jared B. Bennett,et al.  Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi , 2020, Nature Communications.

[77]  J. Augereau,et al.  Identification of compounds active against quiescent artemisinin-resistant Plasmodium falciparum parasites via the quiescent-stage survival assay (QSA). , 2020, The Journal of antimicrobial chemotherapy.

[78]  J. Kublin,et al.  Safety, pharmacokinetics and causal prophylactic efficacy of KAF156 in a Plasmodium falciparum human infection study. , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[79]  P. Duffy,et al.  Malaria vaccines since 2000: progress, priorities, products , 2020, npj Vaccines.

[80]  A. Wlodawer,et al.  Activation mechanism of plasmepsins, pepsin‐like aspartic proteases from Plasmodium, follows a unique trans‐activation pathway , 2020, The FEBS journal.

[81]  P. Nordlund,et al.  Cellular thermal shift assay for the identification of drug–target interactions in the Plasmodium falciparum proteome , 2020, Nature Protocols.

[82]  R. Madhubala,et al.  Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Leishmania donovani leucyl-tRNA synthetase , 2020, Journal of Biosciences.

[83]  S. Ralph,et al.  K13, the Cytostome, and Artemisinin Resistance. , 2020, Trends in parasitology.

[84]  E. Winzeler,et al.  Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity , 2020, Cell chemical biology.

[85]  M. Mckee,et al.  Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. , 2020, JAMA.

[86]  L. H. Carvalho,et al.  Novel Insights into Plasmodium vivax Therapeutic Failure: CYP2D6 Activity and Time of Exposure to Malaria Modulate the Risk of Recurrence , 2020, Antimicrobial Agents and Chemotherapy.

[87]  Manuel de Lera Ruiz,et al.  Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle , 2020, Cell host & microbe.

[88]  T. Egan,et al.  Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites , 2020, Scientific Reports.

[89]  E. Winzeler,et al.  Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials , 2020, ACS infectious diseases.

[90]  J. McCarthy,et al.  Safety, Tolerability, Pharmacokinetics, and Antimalarial Activity of the Novel Plasmodium Phosphatidylinositol 4-Kinase Inhibitor MMV390048 in Healthy Volunteers , 2020, Antimicrobial Agents and Chemotherapy.

[91]  B. Bergmann,et al.  A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites , 2020, Science.

[92]  Y. Yuthavong,et al.  The Structure of Plasmodium falciparum Hydroxymethyldihydropterin Pyrophosphokinase-Dihydropteroate Synthase Reveals the Basis of Sulfa Resistance. , 2019, The FEBS journal.

[93]  Zhenquan Hu,et al.  Discovery of 6'-chloro-N-methyl-5'-(phenylsulfonamido)-[3,3'-bipyridine]-5-carboxamide (CHMFL-PI4K-127) as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. , 2019, European journal of medicinal chemistry.

[94]  S. Ralph,et al.  Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. , 2019, Cell reports.

[95]  J. Rayner,et al.  Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage , 2019, Cell.

[96]  Yong Zi Tan,et al.  Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT , 2019, Nature.

[97]  Roger G. Linington,et al.  The antimalarial natural product salinipostin A identifies essential α/β serine hydrolases involved in lipid metabolism in P. falciparum parasites , 2019, bioRxiv.

[98]  M. Llinás,et al.  Antimalarial pantothenamide metabolites target acetyl–coenzyme A biosynthesis in Plasmodium falciparum , 2019, Science Translational Medicine.

[99]  Anita Ghansah,et al.  Major subpopulations of Plasmodium falciparum in sub-Saharan Africa , 2019, Science.

[100]  S. Ralph,et al.  Delayed Death by Plastid Inhibition in Apicomplexan Parasites. , 2019, Trends in parasitology.

[101]  Alex B. Miller,et al.  Antimalarial activity of primaquine operates via a two-step biochemical relay , 2019, Nature Communications.

[102]  S. Kappe,et al.  ELQ-331 as a prototype for extremely durable chemoprotection against malaria , 2019, Malaria Journal.

[103]  T. Nozaki,et al.  Identification of Plasmodium falciparum Mitochondrial Malate: Quinone Oxidoreductase Inhibitors from the Pathogen Box , 2019, Genes.

[104]  E. Winzeler,et al.  Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents , 2019, PLoS pathogens.

[105]  Juan A. Bueren-Calabuig,et al.  Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition , 2019, Proceedings of the National Academy of Sciences.

[106]  M. Todd,et al.  The past, present and future of anti-malarial medicines , 2019, Malaria Journal.

[107]  Juan A. Bueren-Calabuig,et al.  Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis , 2019, Proceedings of the National Academy of Sciences.

[108]  L. Childs,et al.  Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission , 2019, Nature.

[109]  Aparup Das,et al.  Malaria elimination: Using past and present experience to make malaria-free India by 2030 , 2019, Journal of vector borne diseases.

[110]  Manuel Llinás,et al.  Open-source discovery of chemical leads for next-generation chemoprotective antimalarials , 2018, Science.

[111]  Arjun Ravikumar,et al.  Scalable, Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds , 2018, Cell.

[112]  Sarah Rees,et al.  A discovery and development roadmap for new endectocidal transmission-blocking agents in malaria , 2018, Malaria Journal.

[113]  D. Hartl,et al.  Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility , 2018, Proceedings of the National Academy of Sciences.

[114]  B. Greenwood,et al.  Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria , 2018, Malaria Journal.

[115]  Pradipsinh K Rathod,et al.  Identification and Mechanistic Understanding of Dihydroorotate Dehydrogenase Point Mutations in Plasmodium falciparum that Confer in Vitro Resistance to the Clinical Candidate DSM265. , 2018, ACS infectious diseases.

[116]  E. Winzeler,et al.  Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome , 2018, Journal of medicinal chemistry.

[117]  E. Winzeler,et al.  A high throughput screen for next-generation leads targeting malaria parasite transmission , 2018, Nature Communications.

[118]  Rachel L. Edwards,et al.  MEPicides: α,β-Unsaturated Fosmidomycin Analogues as DXR Inhibitors against Malaria. , 2018, Journal of medicinal chemistry.

[119]  E. Winzeler,et al.  Validation of the protein kinase PfCLK3 as a multi-stage cross species malarial drug target , 2018, bioRxiv.

[120]  R. Sauer,et al.  A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites , 2018, bioRxiv.

[121]  A. Korkegian,et al.  Construction of an overexpression library for Mycobacterium tuberculosis , 2018, Biology methods & protocols.

[122]  D. Fidock,et al.  Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine , 2018, Nature Communications.

[123]  M. Bogyo,et al.  Defining the Determinants of Specificity of Plasmodium Proteasome Inhibitors. , 2018, Journal of the American Chemical Society.

[124]  A. O. Odom John,et al.  Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination , 2018, F1000Research.

[125]  Peter G. Schultz,et al.  Repurposing isoxazoline veterinary drugs for control of vector-borne human diseases , 2018, Proceedings of the National Academy of Sciences.

[126]  J. Mccammon,et al.  Remarkable similarity in Plasmodium falciparum and Plasmodium vivax geranylgeranyl diphosphate synthase dynamics and its implication for antimalarial drug design , 2018, Chemical biology & drug design.

[127]  C. Eyermann,et al.  Plasmodial Kinase Inhibitors: License to Cure? , 2018, Journal of medicinal chemistry.

[128]  S. Kappe,et al.  A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum , 2018, Nature Communications.

[129]  J. Rayner,et al.  Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis , 2018, Science.

[130]  S. Schaffner,et al.  Plasmepsin II–III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum , 2018, Nature Communications.

[131]  E. Ashley,et al.  Malaria , 2018, The Lancet.

[132]  P. Rosenthal,et al.  Plasmodium falciparum Falcipain-2a Polymorphisms in Southeast Asia and Their Association With Artemisinin Resistance , 2018, The Journal of infectious diseases.

[133]  B. Iorga,et al.  The antimalarial compound ELQ‐400 is an unusual inhibitor of the bc1 complex, targeting both Qo and Qi sites , 2018, FEBS letters.

[134]  V. Schramm,et al.  Genetic resistance to purine nucleoside phosphorylase inhibition in Plasmodium falciparum , 2018, Proceedings of the National Academy of Sciences.

[135]  A. Holder,et al.  N-Myristoylation as a Drug Target in Malaria: Exploring the Role of N-Myristoyltransferase Substrates in the Inhibitor Mode of Action. , 2018, ACS infectious diseases.

[136]  T. Shapiro,et al.  Long-acting injectable atovaquone nanomedicines for malaria prophylaxis , 2018, Nature Communications.

[137]  M. Llinás,et al.  Specific Inhibition of the Bifunctional Farnesyl/Geranylgeranyl Diphosphate Synthase in Malaria Parasites via a New Small-Molecule Binding Site. , 2017, Cell chemical biology.

[138]  N. Tolia,et al.  Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion , 2017, Science.

[139]  K. Harlos,et al.  Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis. , 2017, Structure.

[140]  Joana C. Silva,et al.  Association of a Novel Mutation in the Plasmodium falciparum Chloroquine Resistance Transporter With Decreased Piperaquine Sensitivity , 2017, The Journal of infectious diseases.

[141]  J. Rayner,et al.  Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes , 2017, Cell.

[142]  Gregory M. Goldgof,et al.  Development of a Potent Inhibitor of the Plasmodium Proteasome with Reduced Mammalian Toxicity , 2017, Journal of medicinal chemistry.

[143]  F. Diederich,et al.  Antimalarial Inhibitors Targeting Serine Hydroxymethyltransferase (SHMT) with in Vivo Efficacy and Analysis of their Binding Mode Based on X-ray Cocrystal Structures. , 2017, Journal of medicinal chemistry.

[144]  R. Sinden,et al.  Hundreds of dual-stage antimalarial molecules discovered by a functional gametocyte screen , 2017, Nature Communications.

[145]  David M. Shackleford,et al.  Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase , 2017, Science Translational Medicine.

[146]  Patrick G. Schupp,et al.  A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue , 2017, Nature Communications.

[147]  K. Kirk,et al.  The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens , 2017, PLoS pathogens.

[148]  B. Bergmann,et al.  Substrate-analogous inhibitors exert antimalarial action by targeting the Plasmodium lactate transporter PfFNT at nanomolar scale , 2017, PLoS pathogens.

[149]  R. Baumgartner,et al.  SC83288 is a clinical development candidate for the treatment of severe malaria , 2017, Nature Communications.

[150]  J. Burrows,et al.  New developments in anti-malarial target candidate and product profiles , 2017, Malaria Journal.

[151]  S. Knapp,et al.  Discovery of a PCAF Bromodomain Chemical Probe , 2016, Angewandte Chemie.

[152]  K. Saliba,et al.  Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway , 2016, Parasites & Vectors.

[153]  Victoria C. Corey,et al.  UDP-galactose and Acetyl-CoA transporters as Plasmodium multidrug resistance genes , 2016, Nature Microbiology.

[154]  David W. Gray,et al.  Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy , 2016, Journal of medicinal chemistry.

[155]  Benito Munoz,et al.  Diversity-oriented synthesis yields novel multistage antimalarial inhibitors , 2016, Nature.

[156]  J. Mccammon,et al.  Dynamic Structure and Inhibition of a Malaria Drug Target: Geranylgeranyl Diphosphate Synthase. , 2016, Biochemistry.

[157]  E. Winzeler,et al.  Phenotypic Screens in Antimalarial Drug Discovery. , 2016, Trends in parasitology.

[158]  Glen Spraggon,et al.  Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness , 2016, Nature.

[159]  Victoria C. Corey,et al.  CRISPR‐Cas9‐modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine‐containing compounds but potentiates artemisinin‐based combination therapy partner drugs , 2016, Molecular microbiology.

[160]  Victoria C. Corey,et al.  Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes , 2016, ACS infectious diseases.

[161]  Margaret A. Phillips,et al.  Identification of New Human Malaria Parasite Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors by Pharmacophore and Structure-Based Virtual Screening , 2016, J. Chem. Inf. Model..

[162]  J. Niles,et al.  Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites , 2016, Nature Communications.

[163]  M. F. Boni,et al.  The Community As the Patient in Malaria-Endemic Areas: Preempting Drug Resistance with Multiple First-Line Therapies , 2016, PLoS medicine.

[164]  M. Bogyo,et al.  Structure and function based design of Plasmodium-selective proteasome inhibitors , 2016, Nature.

[165]  G. Wunderlich,et al.  Single-target high-throughput transcription analyses reveal high levels of alternative splicing present in the FPPS/GGPPS from Plasmodium falciparum , 2015, Scientific Reports.

[166]  D. Schmatz,et al.  Hit and lead criteria in drug discovery for infectious diseases of the developing world , 2015, Nature Reviews Drug Discovery.

[167]  Alessandro Paiardini,et al.  Identification and Validation of a Potent Dual Inhibitor of the P. falciparum M1 and M17 Aminopeptidases Using Virtual Screening , 2015, PloS one.

[168]  A. Agarwal,et al.  Discovery of a selective, safe and novel anti-malarial compound with activity against chloroquine resistant strain of Plasmodium falciparum , 2015, Scientific Reports.

[169]  Farah El Mazouni,et al.  A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria , 2015, Science Translational Medicine.

[170]  M. Hakimi,et al.  Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis. , 2015, Structure.

[171]  S. Lindquist,et al.  The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs , 2015, Science Translational Medicine.

[172]  David W. Gray,et al.  A novel multiple-stage antimalarial agent that inhibits protein synthesis , 2015, Nature.

[173]  Christopher M. Armstrong,et al.  Plasmodium IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target. , 2015, ACS infectious diseases.

[174]  Adina Heinberg,et al.  The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations , 2015, Annals of the New York Academy of Sciences.

[175]  D. Wirth,et al.  Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate , 2015, Nature Communications.

[176]  D. Fidock,et al.  K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates , 2015, Science.

[177]  D. Kwiatkowski,et al.  Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance , 2015, Science.

[178]  B. Wilkinson,et al.  Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo , 2014, Proceedings of the National Academy of Sciences.

[179]  Hongshen Ma,et al.  (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium , 2014, Proceedings of the National Academy of Sciences.

[180]  Elizabeth A. Winzeler,et al.  Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials , 2014, ACS chemical biology.

[181]  C. Biot,et al.  Ferroquine as an oxidative shock antimalarial. , 2014, Current topics in medicinal chemistry.

[182]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[183]  D. Caridha,et al.  The metabolism of primaquine to its active metabolite is dependent on CYP 2D6 , 2013, Malaria Journal.

[184]  G. Wunderlich,et al.  Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum , 2013, Malaria Journal.

[185]  Yuexin Li,et al.  Quinolone-3-Diarylethers: A New Class of Antimalarial Drug , 2013, Science Translational Medicine.

[186]  V. S. Reddy,et al.  Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum , 2013, Proceedings of the National Academy of Sciences.

[187]  C. Siethoff,et al.  First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials , 2012, British journal of clinical pharmacology.

[188]  L. Levin,et al.  Characterization of Plasmodium falciparum Adenylyl Cyclase-β and Its Role in Erythrocytic Stage Parasites , 2012, PloS one.

[189]  John A. Tallarico,et al.  Selective and Specific Inhibition of the Plasmodium falciparum Lysyl-tRNA Synthetase by the Fungal Secondary Metabolite Cladosporin , 2012, Cell host & microbe.

[190]  J. Clardy,et al.  Characterization of Plasmodium Liver Stage Inhibition by Halofuginone , 2012, ChemMedChem.

[191]  Francisco-Javier Gamo,et al.  Global phenotypic screening for antimalarials. , 2012, Chemistry & biology.

[192]  Yingyao Zhou,et al.  Imaging of Plasmodium Liver Stages to Drive Next-Generation Antimalarial Drug Discovery , 2011, Science.

[193]  Mark S. Sundrud,et al.  Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase , 2011, Nature chemical biology.

[194]  Joseph L. DeRisi,et al.  Chemical Rescue of Malaria Parasites Lacking an Apicoplast Defines Organelle Function in Blood-Stage Plasmodium falciparum , 2011, PLoS biology.

[195]  Umberto D'Alessandro,et al.  Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria , 2011, Malaria Journal.

[196]  Badry Bursulaya,et al.  Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. , 2010, Genome research.

[197]  T. Richie,et al.  The RTS,S malaria vaccine. , 2010, Vaccine.

[198]  James R. Brown,et al.  Thousands of chemical starting points for antimalarial lead identification , 2010, Nature.

[199]  Anang A. Shelat,et al.  Chemical genetics of Plasmodium falciparum , 2010, Nature.

[200]  Peter G. Schultz,et al.  In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen , 2008, Proceedings of the National Academy of Sciences.

[201]  N. White,et al.  Qinghaosu (Artemisinin): The Price of Success , 2008, Science.

[202]  Fyaz M. D. Ismail,et al.  Mapping antimalarial pharmacophores as a useful tool for the rapid discovery of drugs effective in vivo: design, construction, characterization, and pharmacology of metaquine. , 2005, Journal of medicinal chemistry.

[203]  L. Gerena,et al.  Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. , 1994, Journal of medicinal chemistry.