Structural and optical characterization of type-II InAs/InAs1−xSbx superlattices grown by metalorganic chemical vapor deposition

Strain-balanced type-II InAs/InAs1–xSbx superlattices with various compositions (x = 0.22, 0.23, 0.37) and different layer thicknesses (tInAs = 7 nm, tInAsSb = 3.3, 2.3, 2.0 nm, respectively) have been grown by metalorganic chemical vapor deposition on GaSb substrates. X-ray diffraction revealed narrow satellite peaks (full-width-half-maximum of <100 arc sec), indicative of uniform superlattice periodicity and excellent crystallinity, which was also corroborated by cross-sectional transmission electron microscopy observations. Despite relaxation, low-temperature photoluminescence measurements showed peaks at 6.7 μm and 5.8 μm, while photoconductance results showed strong spectral response up to 200 K, when the photoresponse onset was 8.6 μm.

[1]  Yong-Hang Zhang,et al.  CONTINUOUS WAVE OPERATION OF INAS/INASXSB1-X MIDINFRARED LASERS , 1995 .

[2]  L. Esaki,et al.  Two-dimensional electronic structure in InAs-GaSb superlattices☆☆☆ , 1978 .

[3]  Joel N. Schulman,et al.  The CdTe/HgTe superlattice: Proposal for a new infrared material , 1979 .

[4]  Jerry R. Meyer,et al.  Analysis and performance of type-II superlattice infrared detectors , 2011 .

[5]  Joel N. Schulman,et al.  Type II superlattices for infrared detectors and devices , 1991 .

[6]  Vaidya Nathan,et al.  Recent Advances in LWIR Type-II InAs/GaSb Superlattice Photodetectors and Focal Plane Arrays at the Center for Quantum Devices , 2009, Proceedings of the IEEE.

[7]  L. Esaki,et al.  A new semiconductor superlattice , 1977 .

[8]  R. M. Biefeld,et al.  Ordering-induced band-gap reduction in InAs sub 1 minus x Sb sub x ( x approx 0. 4) alloys and superlattices , 1992 .

[9]  L. R. Dawson,et al.  III--V strained layer supperlattices for long-wavelength detector applications: Recent progress , 1987 .

[10]  Dawson,et al.  Ordering-induced band-gap reduction in InAs1-xSbx (x , 1992, Physical review. B, Condensed matter.

[11]  Joel N. Schulman,et al.  Advantages of the HgTe‐CdTe superlattice as an infrared detector material , 1983 .

[12]  Jin Fan,et al.  Epitaxial growth and characterization of InAs/GaSb and InAs/InAsSb type-II superlattices on GaSb substrates by metalorganic chemical vapor deposition for long wavelength infrared photodetectors , 2011 .

[13]  G. C. Osbourn,et al.  InAsSb strained‐layer superlattices for long wavelength detector applications , 1984 .

[14]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[15]  Gregory Belenky,et al.  Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials , 2010 .

[16]  S. P. Watkins,et al.  Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 μm , 2009 .

[17]  Carl R. Pidgeon,et al.  BAND ALIGNMENTS AND OFFSETS IN IN(AS,SB)INAS SUPERLATTICES , 1997 .