A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification

This paper develops a new class of structural vector autoregressions (SVARs) with time-varying parameters, which I call a drifting SVAR (DSVAR). The DSVAR is the first structural time-varying parameter model to allow for internally consistent probabilistic inference under exact?or set?identification, nesting the widely used SVAR framework as a special case. I prove that the DSVAR implies a reduced-form representation, from which structural inference can proceed similarly to the widely used two-step approach for SVARs: beginning with estimation of a reduced form and then choosing among observationally equivalent candidate structural parameters via the imposition of identifying restrictions. In a special case, the implied reduced form is a tractable known model for which I provide the first algorithm for Bayesian estimation of all free parameters. I demonstrate the framework in the context of Baumeister and Peersman?s (2013b) work on time variation in the elasticity of oil demand.

[1]  H. Uhlig What are the Effects of Monetary Policy on Output? : Results from an Agnostic Identification Procedure , 2005 .

[2]  G. Peersman,et al.  The Role of Time-Varying Price Elasticities in Accounting for Volatility Changes in the Crude Oil Market , 2013 .

[3]  T. Rothenberg Identification in Parametric Models , 1971 .

[4]  H. Uhlig On singular Wishart and singular multivariate beta distributions , 1994 .

[5]  C. Sims,et al.  Were There Regime Switches in U.S. Monetary Policy? , 2004 .

[6]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[7]  Christiane Baumeister,et al.  Time-Varying Effects of Oil Supply Shocks on the US Economy , 2008 .

[8]  Michael A. West,et al.  Time Series: Modeling, Computation, and Inference , 2010 .

[9]  C. Baumeister,et al.  Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound , 2012 .

[10]  Giorgio E. Primiceri,et al.  Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[11]  F. Canova,et al.  Structural changes in the US economy: Is there a role for monetary policy? , 2009 .

[12]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[13]  Yoshihiko Konno EXACT MOMENTS OF THE MULTIVARIATE F AND BETA DISTRIBUTIONS , 1988 .

[14]  M. West,et al.  An analysis of international exchange rates using multivariate DLM's , 1987 .

[15]  T. Sargent,et al.  Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S. , 2003 .

[16]  Dimitris Korobilis,et al.  Large Time-Varying Parameter VARs , 2012 .

[17]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[18]  James D. Hamilton,et al.  Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information , 2014 .

[19]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[20]  Mike West,et al.  Autoregressive Models for Variance Matrices: Stationary Inverse Wishart Processes , 2011, 1107.5239.

[21]  Daniel F. Waggoner,et al.  Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference , 2008 .

[22]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[23]  Daniel F. Waggoner,et al.  Methods for Inference in Large Multiple-Equation Markov-Switching Models , 2006 .

[24]  V. Ramey,et al.  Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data , 2014, Journal of Political Economy.

[25]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[26]  Thorsten Drautzburg,et al.  Identification Through Heterogeneity , 2017, SSRN Electronic Journal.

[27]  T. Sargent,et al.  Evolving Post-World War II U.S. Inflation Dynamics , 2001, NBER Macroeconomics Annual.

[28]  G. Peersman,et al.  Time Variation in U.S. Wage Dynamics , 2010, SSRN Electronic Journal.

[29]  C. Sims A nine variable probabilistic macroeconomic forecasting model , 1993 .

[30]  Harald Uhlig,et al.  What are the Effects of Fiscal Policy Shocks? , 2002 .

[31]  A. Auerbach,et al.  Fiscal Multipliers in Recession and Expansion , 2011 .

[32]  Jon Faust The robustness of identified VAR conclusions about money , 1998 .

[33]  Mark W. Watson,et al.  Business Cycles, Indicators and Forecasting , 1993 .

[34]  Jonas E. Arias,et al.  Inference Based on Structural Vector Autoregressions Identified With Sign and Zero Restrictions: Theory and Applications , 2018 .

[35]  Todd E. Clark,et al.  Macroeconomic Forecasting Performance under Alternative Specifications of Time-Varying Volatility , 2015 .

[36]  Muni S. Srivastava,et al.  Singular Wishart and multivariate beta distributions , 2003 .

[37]  H. Uhlig Bayesian vector autoregressions with stochastic volatility , 1997 .

[38]  F. Canova,et al.  Monetary Disturbances Matter for Business Fluctuations in the G-7 , 2000 .