High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres

Abstract Here we report on the hierarchical porous rutile TiO 2 nanorod micospheres as an anode material for lithium-ion batteries. The resulting hierarchical porous rutile TiO 2 nanorod microspheres possessed much higher reversible capacity, cycling stability and rate capability than nanosized rutile TiO 2 previously reported in the literatures. These good electrochemical performances may be attributed to the facile diffusion of Li + ions from outside through the porous channels into the TiO 2 nanorods in the microspheres and the high electrode–electrolyte contact area offered by hierarchical porous microspheres with a large specific surface area.

[1]  L. Kavan,et al.  Lithium Insertion into Mesoscopic and Single‐Crystal TiO2 (Rutile) Electrodes , 1999 .

[2]  C. Natarajan,et al.  Preparation of a nanocrystalline titanium dioxide negative electrode for the rechargeable lithium ion battery , 1998 .

[3]  Ladislav Kavan,et al.  ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .

[4]  C. M. Li,et al.  Novel porous anatase TiO2 nanorods and their high lithium electroactivity , 2007 .

[5]  M. Wagemaker,et al.  Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase , 2002, Nature.

[6]  J. Schoonman,et al.  Spatial Extent of Lithium Intercalation in Anatase TiO2 , 1999 .

[7]  K. Abraham Directions in secondary lithium battery research and development , 1993 .

[8]  M. Wagemaker,et al.  Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.

[9]  J. Jamnik,et al.  Nanocrystallinity effects in lithium battery materials , 2003 .

[10]  B. Scrosati,et al.  Anatase as a cathode material in lithium—organic electrolyte rechargeable batteries , 1981 .

[11]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[12]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[13]  U. V. Varadaraju,et al.  Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2 , 2006 .

[14]  Xueping Gao,et al.  Preparation and Electrochemical Characterization of Anatase Nanorods for Lithium-Inserting Electrode Material , 2004 .

[15]  J. Tarascon,et al.  Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature , 2007 .

[16]  Palani Balaya,et al.  Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity , 2003 .

[17]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[18]  T. Ohzuku,et al.  Nonaqueous lithium/titanium dioxide cell , 1979 .

[19]  Z. Zou,et al.  Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO2 Nanorod Superstructures , 2007 .

[20]  L. Kavan,et al.  Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide , 1997 .

[21]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[22]  Huaiyong Zhu,et al.  Electrochemical lithium storage of titania nanotubes modified with NiO nanoparticles , 2008 .