Robust approach for disparity estimation in stereo vision

Abstract In this paper, we present a robust probabilistic method for the estimation of stereo disparity. It is based in Bayesian estimation theory, with a prior Markov random field model for the assigned disparities. The optimal estimator is computed using a Gauss-Markov random field model for the corresponding posterior marginals, which results in a diffusion process in probability space. This process, with the appropriate boundary conditions, is also used to estimate disparity in problematic regions of stereo pairs, such as occluded areas and non-textured (homogeneous) regions. Experimental comparisons of the proposed approach with other state-of-the-art methods are presented as well.

[1]  Eisaku Maeda,et al.  Layered Neural Network for Stereo Disparity Detection , 1992 .

[2]  Takeo Kanade,et al.  A stereo machine for video-rate dense depth mapping and its new applications , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[4]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[5]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Roberto Manduchi,et al.  Stereo Matching as a Nearest-Neighbor Problem , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[8]  Olga Veksler,et al.  Markov random fields with efficient approximations , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[9]  Takeo Kanade,et al.  A multibaseline stereo system with active illumination and real-time image acquisition , 1995, Proceedings of IEEE International Conference on Computer Vision.

[10]  Narendra Ahuja,et al.  Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  K. Prazdny,et al.  Detection of binocular disparities , 2004, Biological Cybernetics.

[12]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[13]  Richard Szeliski,et al.  Stereo matching with non-linear diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Max A. Viergever,et al.  Area-based computation of stereo disparity with model-based window size selection , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[15]  R. D. Arnold Automated stereo perception , 1983 .

[16]  Richard Szeliski,et al.  Stereo Matching with Transparency and Matting , 1999, International Journal of Computer Vision.

[17]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[18]  Wolfgang Niem,et al.  A Virtual Studio for Live Broadcasting: The Mona Lisa Project , 1996, IEEE Multim..

[19]  Takeo Kanade,et al.  A Multiple-Baseline Stereo , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Gonzalo Pajares,et al.  A Neural Network model in stereovision matching , 1995, Neural Networks.

[21]  Carlo Tomasi,et al.  Depth Discontinuities by Pixel-to-Pixel Stereo , 1999, International Journal of Computer Vision.

[22]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[23]  David Mumford,et al.  A Bayesian treatment of the stereo correspondence problem using half-occluded regions , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  Alan L. Yuille,et al.  Occlusions and binocular stereo , 1992, International Journal of Computer Vision.

[26]  David J. Fleet,et al.  Phase-based disparity measurement , 1991, CVGIP Image Underst..

[27]  Aaron F. Bobick,et al.  Large Occlusion Stereo , 1999, International Journal of Computer Vision.

[28]  Shree K. Nayar,et al.  Ordinal measures for visual correspondence , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Sébastien Roy,et al.  Stereo Without Epipolar Lines: A Maximum-Flow Formulation , 1999, International Journal of Computer Vision.

[31]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[32]  Olivier D. Faugeras,et al.  Variational principles, surface evolution, PDEs, level set methods, and the stereo problem , 1998, IEEE Trans. Image Process..

[33]  Rios Figueroa,et al.  A filtering approach to the integration of stereo and motion. , 1993 .

[34]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[35]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  R. T. Gray,et al.  Prediction Of Correlation Errors In Stereo-Pair Images , 1980 .