Improving Maintenance Strategies from Experience Feedback

A huge amount of rough data is available in companies on past maintenance activities as a result of the implementation of CMMS (Computerized Maintenance Management System). In that context, we focus on an experience feedback system dedicated to maintenance, allowing the capitalization of past interventions by means of a formal knowledge representation language, and the extraction from these interventions of new knowledge for future reuse.

[1]  R. Cross,et al.  Strategic Learning in a Knowledge Economy , 2000 .

[2]  Claudia Marinica,et al.  Association Rule Interactive Post-processing using Rule Schemas and Ontologies - ARIPSO , 2010 .

[3]  Zhaohao Sun A waterfall model for knowledge management and experience management , 2004, Fourth International Conference on Hybrid Intelligent Systems (HIS'04).

[4]  Richard J. Cleary Applied Data Mining: Statistical Methods for Business and Industry , 2006 .

[5]  Francky Trichet,et al.  Axiom-based ontology matching , 2005, K-CAP '05.

[6]  Ke Wang,et al.  Visually Aided Exploration of Interesting Association Rules , 1999, PAKDD.

[7]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[8]  D. Kolb,et al.  The Process of Experiential Learning , 2000 .

[9]  Michel Leclère,et al.  Ontological Engineering and Mathematical Knowledge Management: A Formalization of Projective Geometry , 2003, Annals of Mathematics and Artificial Intelligence.

[10]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[11]  Catherine Faron-Zucker,et al.  Griwes: Generic Model and Preliminary Specifications for a Graph-Based Knowledge Representation Toolkit , 2008, ICCS.

[12]  Jesús Contreras,et al.  Open Innovation in an Enterprise 3.0 framework: Three case studies , 2012, Expert Syst. Appl..

[13]  Olivier Corby,et al.  Conceptual Graphs for Semantic Web Applications , 2005, ICCS.

[14]  Adolfo Crespo Márquez,et al.  Contemporary maintenance management: process, framework and supporting pillars , 2006 .

[15]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[16]  Amadou Ndiaye,et al.  Answering queries that may have results in the future: A case study in food science , 2010, Knowl. Based Syst..

[17]  S. Liao,et al.  Relationships between knowledge inertia, organizational learning and organization innovation , 2008 .

[18]  I. Alsyouf Maintenance practices in Swedish industries: Survey results , 2009 .

[19]  Laurent Geneste,et al.  Elaboration and Exploitation of Lessons Learned , 2002, Intelligent Information Processing.

[20]  Mirjam Minor Introduction Strategy and Feedback from an Experience Management Project , 2005, Wissensmanagement.

[21]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[22]  Ralph Bergmann,et al.  Experience Management: Foundations, Development Methodology, and Internet-Based Applications , 2002 .

[23]  Jean-François Baget,et al.  Extensions of Simple Conceptual Graphs: the Complexity of Rules and Constraints , 2011, J. Artif. Intell. Res..

[24]  Michael Uschold,et al.  Ontologies: principles, methods and applications , 1996, The Knowledge Engineering Review.

[25]  S. B. Yahia,et al.  IGB : une nouvelle base générique informative des règles d'association , 2006 .

[26]  Marvin Rausand,et al.  Reliability Centred Maintenance , 2008 .

[27]  S. Mann Intellectual Capital: The New Wealth of Organizations , 1999 .

[28]  H. Chertkow,et al.  Semantic memory , 2002, Current neurology and neuroscience reports.

[29]  Marie-Laure Mugnier,et al.  Knowledge Representation and Reasonings Based on Graph Homomorphism , 2000, ICCS.

[30]  Alex Borgiday On the Relative Expressiveness of Description Logics and Predicate Logics , 1996 .

[31]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[32]  Yuh-Jen Chen,et al.  Development of a method for ontology-based empirical knowledge representation and reasoning , 2010, Decis. Support Syst..

[33]  Inci Batmaz,et al.  A review of data mining applications for quality improvement in manufacturing industry , 2011, Expert Syst. Appl..

[34]  Madalina Croitoru,et al.  Logical, graph based knowledge representation with CoGui , 2010 .

[35]  William J. Clancey,et al.  Conceptual structures — Information processing in mind and machine J.F. Sowa, systems programming series (Addison-Wesley, Reading, MA, 1984); 481 pages, indices, appendices , 1985 .