Visual Prosthesis

Electronic visual prostheses have demonstrated the ability to restore a rudimentary sense of vision to blind individuals. This review paper will highlight past and recent progress in this field as well as some technical challenges to further advancement. Retinal implants have now been tested in humans by four independent groups. Optic nerve and cortical implants have been also been evaluated in humans. The first implants have achieved remarkable results, including detection of motion and distinguishing objects from a set. To improve on these results, a number of research groups have performed simulations that predict up to 1000 individual pixels may be needed to restore significant functions such as face recognition and reading. In order to achieve a device that can stimulate the visual system in this many locations, issues of power consumption and electronic packaging must be resolved.

[1]  James Weiland,et al.  In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[2]  A. Berthoz,et al.  Adaptive modification of the vestibulo-ocular reflex by mental effort in darkness , 2004, Experimental Brain Research.

[3]  R. Sharma,et al.  Management of hereditary retinal degenerations: present status and future directions. , 1999, Survey of ophthalmology.

[4]  Gislin Dagnelie,et al.  Visually guided performance of simple tasks using simulated prosthetic vision. , 2003, Artificial organs.

[5]  E. Zrenner,et al.  Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[6]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. , 1996, Brain : a journal of neurology.

[7]  A. Cowey,et al.  Magnetically induced phosphenes in sighted, blind and blindsighted observers , 2000, Neuroreport.

[8]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[9]  Warren M Slocum,et al.  What delay fields tell us about striate cortex. , 2007, Journal of neurophysiology.

[10]  Gislin Dagnelie,et al.  Facial recognition using simulated prosthetic pixelized vision. , 2003, Investigative ophthalmology & visual science.

[11]  R Clay Reid,et al.  Demonstration of artificial visual percepts generated through thalamic microstimulation , 2007, Proceedings of the National Academy of Sciences.

[12]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[13]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[14]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[15]  J R Bartlett,et al.  Luxotonic responses of units in macaque striate cortex. , 1979, Journal of neurophysiology.

[16]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[17]  M.S. Humayun,et al.  A biomimetic retinal stimulating array , 2005, IEEE Engineering in Medicine and Biology Magazine.

[18]  Peter H. Schiller,et al.  Preliminary studies examining the feasibility of a visual prosthetic device: 2. The laminar specificity of electrical stimulation in monkey area V1 and the visual percepts created , 2010 .

[19]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[20]  S. Hendry,et al.  Delayed reduction in GABA and GAD immunoreactivity of neurons in the adult monkey dorsal lateral geniculate nucleus following monocular deprivation or enucleation , 1991, Experimental Brain Research.

[21]  P H Schiller,et al.  Look and see: how the brain moves your eyes about. , 2001, Progress in brain research.

[22]  J. Dowling,et al.  Roles of aspartate and glutamate in synaptic transmission in rabbit retina. II. Inner plexiform layer. , 1985, Journal of neurophysiology.

[23]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[24]  D. Kömpf,et al.  Eye movements and vestibulo-ocular reflex in the blind , 1987, Journal of Neurology.

[25]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[26]  M. Mladejovsky,et al.  Artificial Vision for the Blind: Electrical Stimulation of Visual Cortex Offers Hope for a Functional Prosthesis , 1974, Science.

[27]  H B Barlow,et al.  The Ferrier lecture, 1980 , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[29]  T. Powell,et al.  Effects of enucleation at different ages on the sizes of neurons in the lateral geniculate nucleus of infant and adult monkeys. , 1987, Brain research.

[30]  E Marg,et al.  Reported visual percepts from stimulation of the human brain with microelectrodes during therapeutic surgery. , 1965, Confinia neurologica.

[31]  E. Keller,et al.  Vestibulo-ocular reflexes of adventitiously and congenitally blind adults. , 1986, Investigative ophthalmology & visual science.

[32]  H. K. Hartline,et al.  THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 1938 .

[33]  J. Weiland,et al.  Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. , 2007, American journal of ophthalmology.

[34]  Charles D. Gilbert,et al.  Lateral interactions in visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[35]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.

[36]  Peter H Schiller,et al.  The ON and OFF channels of the mammalian visual system , 1995, Progress in Retinal and Eye Research.

[37]  J. Simpson,et al.  The accessory optic system and its relation to the vestibulocerebellum. , 1979, Progress in brain research.

[38]  G M Jones,et al.  Plasticity in the adult vestibulo-ocular reflex arc. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  S. B. Brummer,et al.  Electrochemical Considerations for Safe Electrical Stimulation of the Nervous System with Platinum Electrodes , 1977, IEEE Transactions on Biomedical Engineering.

[40]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[41]  V. Casagrande,et al.  The neural architecture of binocular vision , 1996, Eye.

[42]  E. J. Tehovnik Electrical stimulation of neural tissue to evoke behavioral responses , 1996, Journal of Neuroscience Methods.

[43]  E. Callaway,et al.  Parallel colour-opponent pathways to primary visual cortex , 2003, Nature.

[44]  Daniel Palanker,et al.  Design of a high-resolution optoelectronic retinal prosthesis , 2005, Journal of neural engineering.

[45]  Armand R. Tanguay,et al.  Intraocular camera for retinal prostheses , 2007 .

[46]  G. Legge,et al.  Psychophysics of reading—I. Normal vision , 1985, Vision Research.

[47]  R. Jensen,et al.  Unexpectedly Small Percepts Evoked by Epi-Retinal Electrical Stimulation in Blind Humans , 2003 .

[48]  P. Jong Prevalence of age-related macular degeneration in the United States. , 2004 .

[49]  J. L. Stone,et al.  Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. , 1992, Archives of ophthalmology.

[50]  R J Leigh,et al.  Eye movements of the blind. , 1980, Investigative ophthalmology & visual science.

[51]  M. Tigges,et al.  Monocular enucleation reduces immunoreactivity to the calcium-binding protein calbindin 28 kD in the Rhesus monkey lateral geniculate nucleus , 1992, Visual Neuroscience.

[52]  W M Cowan,et al.  Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey. , 1960, Journal of anatomy.

[53]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[54]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[55]  Gregory C DeAngelis,et al.  Disparity Channels in Early Vision , 2007, The Journal of Neuroscience.

[56]  Manjunatha Mahadevappa,et al.  Assessment of Retinal Nerve Fiber Layer Thickness by Use of Optical Coherence Tomography and Retinal Dichroïsm Measurement: Preliminary Study , 2003 .

[57]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[58]  R. Vautin,et al.  Magnification factor and receptive field size in foveal striate cortex of the monkey , 2004, Experimental Brain Research.

[59]  J. Kaas,et al.  Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina , 1992, Vision Research.

[60]  J Caprioli,et al.  The treatment of normal-tension glaucoma. , 1998, American journal of ophthalmology.

[61]  R.V. Shannon,et al.  A model of safe levels for electrical stimulation , 1992, IEEE Transactions on Biomedical Engineering.

[62]  A. Peters Number of Neurons and Synapses in Primary Visual Cortex , 1987 .

[63]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[64]  S. Schein Anatomy of macaque fovea and spatial densities of neurons in foveal representation , 1988, The Journal of comparative neurology.

[65]  Eric L. Schwartz,et al.  Computational Studies of the Spatial Architecture of Primate Visual Cortex , 1994 .

[66]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[67]  Avi Caspi,et al.  Spatial Vision in Blind Subjects Implanted With the Second Sight Retinal Prosthesis , 2007 .

[68]  R. Hornig,et al.  Chronic Epiretinal Chip Implant in Blind Patients With Retinitis Pigmentosa: Long-Term Clinical Results , 2007 .

[69]  J. Kaas,et al.  Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. , 1990, Science.

[70]  K J Ciuffreda,et al.  Fixational ocular motor control is plastic despite visual deprivation. , 2002, Visual neuroscience.

[71]  I. Ohzawa,et al.  On the neurophysiological organization of binocular vision , 1990, Vision Research.

[72]  Gislin Dagnelie,et al.  Real and virtual mobility performance in simulated prosthetic vision , 2007, Journal of neural engineering.

[73]  K. Wise,et al.  Silicon ribbon cables for chronically implantable microelectrode arrays , 1994, IEEE Transactions on Biomedical Engineering.

[74]  H. Barlow,et al.  Changes in the maintained discharge with adaptation level in the cat retina , 1969, The Journal of physiology.

[75]  G. Clark The multiple-channel cochlear implant: the interface between sound and the central nervous system for hearing, speech, and language in deaf people—a personal perspective , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[76]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[77]  Gordon E Legge,et al.  Psychophysics of reading XX. Linking letter recognition to reading speed in central and peripheral vision , 2001, Vision Research.

[78]  Patricia C. Higginbottom,et al.  Americans with Disabilities , 2001 .

[79]  J. Malpeli,et al.  The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta , 1975, The Journal of comparative neurology.

[80]  David Bradley,et al.  A model for intracortical visual prosthesis research. , 2003, Artificial organs.

[81]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[82]  E. J. Tehovnik,et al.  Phosphene induction by microstimulation of macaque V1 , 2007, Brain Research Reviews.

[83]  J R Bartlett,et al.  Response of units in striate cortex of squirrel monkeys to visual and electrical stimuli. , 1974, Journal of neurophysiology.

[84]  Samip P. Shah,et al.  Electrical properties of retinal–electrode interface , 2007, Journal of neural engineering.

[85]  M. Mladejovsky,et al.  ‘Braille’ reading by a blind volunteer by visual cortex stimulation , 1976, Nature.

[86]  J. Tigges,et al.  Parvalbumin immunoreactivity of the lateral geniculate nucleus in adult rhesus monkeys after monocular eye enucleation , 1991, Visual Neuroscience.

[87]  A. A. Skavenski,et al.  Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey , 2004, Experimental Brain Research.

[88]  R. Pritchard Stabilized images on the retina. , 1961, Scientific American.

[89]  K. Fite,et al.  Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia). , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[90]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[91]  C. Kufta,et al.  Visuotopic mapping through a multichannel stimulating implant in primate V1. , 2005, Journal of neurophysiology.

[92]  Ethan D Cohen,et al.  Prosthetic interfaces with the visual system: biological issues , 2007, Journal of neural engineering.

[93]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[94]  Marco Zarbin,et al.  Current Treatment of Age-Related Macular Degeneration , 2007, Optometry and vision science : official publication of the American Academy of Optometry.

[95]  Mark S Humayun,et al.  Past, present, and future of artificial vision. , 2003, Artificial organs.

[96]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[97]  T. Powell,et al.  Changes in the size of cells in the monocular segment of the primate lateral geniculate nucleus during normal development and following visual deprivation. , 1987, Brain research.

[98]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[99]  Roberta L. Klatzky,et al.  Allocentric and Egocentric Spatial Representations: Definitions, Distinctions, and Interconnections , 1998, Spatial Cognition.

[100]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[101]  N. Logothetis,et al.  Lack of long-term cortical reorganization after macaque retinal lesions , 2005, Nature.

[102]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[103]  S. Kelly,et al.  Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. , 2003, Investigative ophthalmology & visual science.

[104]  J. Weiland,et al.  Perceptual thresholds and electrode impedance in three retinal prosthesis subjects , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[105]  W. Richards,et al.  The fortification illusions of migraines. , 1971, Scientific American.

[106]  B. P. J. Broos,et al.  The 'O' of Rembrandt , 1971 .

[107]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[108]  D. Robinson,et al.  Effects of electrical stimulation and reversible lesions of the olivocerebellar pathway on Purkinje cell activity in the flocculus of the cat , 1985, Brain Research.

[109]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  C. Gilbert,et al.  Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[112]  Helga Kolb,et al.  Outer Plexiform Layer , 2007 .

[113]  Takashi Fujikado,et al.  Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats. , 2004, Investigative ophthalmology & visual science.

[114]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[115]  P. Schiller,et al.  Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. , 1972, Journal of neurophysiology.

[116]  Benoît Gérard,et al.  Pattern recognition with the optic nerve visual prosthesis. , 2003, Artificial organs.

[117]  Barry B. Lee,et al.  Psychophysics of electrical stimulation of striate cortex in macaques. , 2005, Journal of neurophysiology.

[118]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[119]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[120]  Stuart F. Cogan,et al.  Experimental Results of Intracortical Electrode Stimulation in Macaque V1 , 2003 .