Multivariate calibration on heterogeneous samples
暂无分享,去创建一个
Brian D. Marx | David C. Weindorf | Bin Li | Somsubhra Chakraborty | S. Chakraborty | D. Weindorf | B. Marx | Bin Li
[1] M. Durbán,et al. Generalized linear array models with applications to multidimensional smoothing , 2006 .
[2] Dandan Wang,et al. Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen☆ , 2015 .
[3] T. Hastie,et al. [A Statistical View of Some Chemometrics Regression Tools]: Discussion , 1993 .
[4] Paul H. C. Eilers,et al. Flexible smoothing with B-splines and penalties , 1996 .
[5] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[6] Paul H. C. Eilers,et al. Generalized linear regression on sampled signals and curves: a P -spline approach , 1999 .
[7] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[8] B. Muthén. Latent variable modeling in heterogeneous populations , 1989 .
[9] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[10] Brian D. Marx,et al. Practical Smoothing , 2021 .
[11] Varying-coefficient single-index signal regression , 2015 .
[12] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[13] Morten Arendt Rasmussen,et al. Generalized L1 penalized matrix factorization , 2017 .
[14] Gilbert Saporta,et al. Clusterwise PLS regression on a stochastic process , 2002, Comput. Stat. Data Anal..
[15] Bin Li,et al. Multivariate calibration with single-index signal regression , 2009 .
[16] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[17] C. Preda,et al. PCR and PLS for Clusterwise Regression on Functional Data , 2007 .
[18] I. Jolliffe. A Note on the Use of Principal Components in Regression , 1982 .
[19] W. DeSarbo,et al. A maximum likelihood methodology for clusterwise linear regression , 1988 .
[20] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[21] B. Marx,et al. Multivariate calibration with temperature interaction using two-dimensional penalized signal regression , 2003 .
[22] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[23] Dinggang Shen,et al. Flexible Locally Weighted Penalized Regression With Applications on Prediction of Alzheimer’s Disease Neuroimaging Initiative’s Clinical Scores , 2019, IEEE Transactions on Medical Imaging.
[24] S. Wold,et al. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .