ANISOTROPIC GROWTH OF VORONOI CELLS

This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[3]  Richard Cowan,et al.  The Use of the Ergodic Theorems in Random Geometry , 1978 .

[4]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[5]  Richard Cowan,et al.  Properties of ergodic random mosaic processes , 1980 .

[6]  R. E. Miles The Random Division of Space , 1972 .

[7]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[8]  M. R. Spiegel Mathematical handbook of formulas and tables , 1968 .

[9]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[10]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[11]  R. E. Miles Poisson flats in Euclidean spaces Part I: A finite number of random uniform flats , 1969, Advances in Applied Probability.

[12]  R. E. Miles,et al.  Monte carlo estimates of the distributions of the random polygons of the voronoi tessellation with respect to a poisson process , 1980 .

[13]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[14]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[15]  J. Møller Random tessellations in ℝ d , 1989, Advances in Applied Probability.

[16]  Some mean value relations on stationary random mosaies in the space , 1980 .

[17]  A. H. Thiessen PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .