Exact thresholds and optimal codes for the binary-symmetric channel and Gallager's decoding algorithm A

We show that for the case of the binary-symmetric channel and Gallager's decoding algorithm A the threshold can, in many cases, be determined analytically. More precisely, we show that the threshold is always upper-bounded by the minimum of (1-/spl lambda//sub 2//spl rho/'(1))/(/spl lambda/'(1)/spl rho/'(1)-/spl lambda//sub 2//spl rho/'(1)) and the smallest positive real root /spl tau/ of a specific polynomial p(x) and we observe that for most cases this bound is tight, i.e., it determines the threshold exactly. We also present optimal degree distributions for a large range of rates. In the case of rate one-half codes, for example, the threshold x/sub 0//sup */ of the optimal degree distribution is given by x/sup *//sub 0//spl sim/0.0513663. Finally, we outline how thresholds of more complicated decoders might be determined analytically.

[1]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[2]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[3]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[4]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[5]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[6]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[7]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[8]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.