Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011)

A central goal of electronics based on correlated materials or ‘Mottronics’ is the ability to switch between distinct collective states with a control voltage. Small changes in structure and charge density near a transition can tip the balance between competing phases, leading to dramatic changes in electronic and magnetic properties. In this work, we demonstrate that an electric field induced two-step ferroelastic switching pathway in (011) oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates can be used to tune the Verwey metal-insulator transition in epitaxial Fe3O4 films in a stable and reversible manner. We also observe robust non-volatile resistance switching in Fe3O4 up to room temperature, driven by ferroelastic strain. These results provides a framework for realizing non-volatile and reversible tuning of order parameters coupled to lattice-strain in epitaxial oxide heterostructures over a broad range of temperatures, with potential device applications.

[1]  Mehta,et al.  Metal-Insulator Transitions in Epitaxial LaVO(3) and LaTiO(3) Films , 2012 .

[2]  J. D. Brock,et al.  Dynamically tuning properties of epitaxial colossal magnetoresistance thin films , 2003 .

[3]  Influence of strain on the magnetization and magnetoelectric effect inLa0.7A0.3MnO3∕PMN−PT(001)(A=Sr,Ca) , 2006, cond-mat/0609760.

[4]  V. Harris,et al.  Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures , 2009 .

[5]  O. Schmidt,et al.  Electrical characterization of PMN–28%PT(001) crystals used as thin-film substrates , 2010 .

[6]  A. Swartz,et al.  Electric field control of the Verwey transition and induced magnetoelectric effect in magnetite , 2012, 1202.6460.

[7]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[8]  Jun Hee Lee,et al.  Coupled magnetic-ferroelectric metal-insulator transition in epitaxially strained SrCoO3 from first principles. , 2011, Physical review letters.

[9]  Ho Won Jang,et al.  Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. , 2010, Nature materials.

[10]  M. Rozenberg,et al.  Taming the Mott Transition for a Novel Mott Transistor , 2008 .

[11]  T. Palstra,et al.  Spin-polarized transport across sharp antiferromagnetic boundaries. , 2002, Physical review letters.

[12]  I. Shvets,et al.  Positive antiphase boundary domain wall magnetoresistance in Fe3O4 (110) heteroepitaxial films , 2011 .

[13]  Erwin,et al.  Enhanced Curie temperatures and magnetoelastic domains in Dy/Lu superlattices and films. , 1993, Physical review letters.

[14]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[15]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[16]  Haruhiko Asanuma,et al.  Electrolyte-gated charge accumulation in organic single crystals , 2006 .

[17]  H. Mao,et al.  Novel pressure-induced magnetic transition in magnetite (Fe3O4). , 2008, Physical review letters.

[18]  G. Carman,et al.  Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg1/3Nb2/3)O3](1−x)-[PbTiO3]x (PMN-PT, x≈0.32) single crystals , 2011 .

[19]  A. D. Rata,et al.  Strain-induced insulator state and giant gauge factor of La0.7Sr0.3CoO3 films. , 2008, Physical review letters.

[20]  Thomas Tybell,et al.  Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures , 1997 .

[21]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[22]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[23]  N. Sun,et al.  E‐Field Control of Exchange Bias and Deterministic Magnetization Switching in AFM/FM/FE Multiferroic Heterostructures , 2011 .

[24]  Angus I. Kingon,et al.  Three-dimensional high-resolution reconstruction of polarization in ferroelectric capacitors by piezoresponse force microscopy , 2004 .

[25]  Yu Wang,et al.  Ferroelectric poling and converse-piezoelectric-effect-induced strain effects in La0.7Ba0.3MnO3 thin films grown on ferroelectric single-crystal substrates , 2009 .

[26]  F. Walz,et al.  The Verwey transition - a topical review , 2002 .

[27]  R. Ramesh,et al.  Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010 .

[28]  Ce-Wen Nan,et al.  Design of a Voltage‐Controlled Magnetic Random Access Memory Based on Anisotropic Magnetoresistance in a Single Magnetic Layer , 2012, Advanced materials.

[29]  Ming Liu,et al.  Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition , 2009 .

[30]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[31]  Lin F. Yang,et al.  Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg(1/3)Nb(2/3))(0.7)Ti(0.3)O3 structure at room temperature. , 2012, Physical review letters.

[32]  Takehiko Mori,et al.  Metallization of magnetite (Fe3O4) under high pressure , 2001 .

[33]  T. Lookman,et al.  Strain-induced metal–insulator phase coexistence in perovskite manganites , 2004, Nature.

[34]  Karin M Rabe,et al.  Magnetic and electric phase control in epitaxial EuTiO(3) from first principles. , 2006, Physical review letters.

[35]  S. Fusil,et al.  Bridging multiferroic phase transitions by epitaxial strain in BiFeO3. , 2010, Physical review letters.

[36]  Jin Hong Lee,et al.  Concurrent transition of ferroelectric and magnetic ordering near room temperature. , 2011, Nature communications.

[37]  Andrew G. Glen,et al.  APPL , 2001 .

[38]  C. Ahn,et al.  Electric field effect in correlated oxide systems , 2003, Nature.

[39]  L. Schultz,et al.  SrTiO3 on piezoelectric PMN-PT(001) for application of variable strain , 2008 .

[40]  Jochen Mannhart,et al.  Calculation of the Capacitances of Conductors -- Perspectives for the Optimization of Electronic Devices , 2009, 0902.4673.

[41]  J. Attfield,et al.  Charge order and three-site distortions in the Verwey structure of magnetite , 2011, Nature.

[42]  Jürgen Schubert,et al.  A strong ferroelectric ferromagnet created by means of spin–lattice coupling , 2010, Nature.

[43]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[44]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[45]  Metcalf,et al.  Nature of the Verwey transition in magnetite (Fe3O4) to pressures of 16 GPa. , 1996, Physical review. B, Condensed matter.

[46]  K. F. Chen,et al.  Observation of B+-ppK+ , 2002 .

[47]  Shimpei Ono,et al.  Electric‐Field Control of the Metal‐Insulator Transition in Ultrathin NdNiO3 Films , 2010, Advanced materials.

[48]  Yiping Wang,et al.  Investigation of substrate-induced strain effects in La0.7Ca0.15Sr0.15MnO3 thin films using ferroelectric polarization and the converse piezoelectric effect , 2008 .