Two-dimensional dynamical systems admitting the normal shift
暂无分享,去创建一个
[1] B. Nicoleta,et al. Symmetry Group of Tzitzeica Surfaces PDE , 1999, math/9910142.
[2] A. Boldin. On the self-similar solutions of normality equation in two-dimensional case , 1993 .
[3] V. V. Dmitrieva,et al. Complete normality conditions for the dynamical systems on Riemannian manifolds , 1993, astro-ph/9405049.
[4] V. V. Dmitrieva,et al. Dynamical systems accepting the normal shift on an arbitrary Riemannian manifold , 1993, hep-th/9405021.
[5] R. Sharipov. Dynamical systems admitting the normal shift , 1993, math/0002202.
[6] A. Boldin,et al. Dynamical Systems Accepting the Normal Shift , 1993, solv-int/9404002.
[7] PROBLEM OF METRIZABILITY FOR THE DYNAMICAL SYSTEMS ACCEPTING THE NORMAL SHIFT. , 1993 .
[8] B. Yu,et al. MULTIDIMENSIONAL DYNAMICAL SYSTEMS ACCEPTING THE NORMAL SHIFT. , 1993 .
[9] Ben Silver,et al. Elements of the theory of elliptic functions , 1990 .
[10] K. Tenenblat. Bäcklund's theorem for submanifolds of space forms and a generalized wave equation , 1985 .
[11] C. Terng,et al. Bäcklund's Theorem for n-Dimensional Submanifolds of R 2n - 1 , 1980 .
[12] C. Terng. A Higher Dimension Generalization of the Sine-Gordon Equation and its Soliton Theory , 1980 .
[13] S. Chern,et al. An analogue of Bäcklund's theorem in affine geometry , 1980 .
[14] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[15] L. Bianchi. Concerning singular transformations _{} of surfaces applicable to quadrics , 1917 .
[16] L. Bianchi. Sopra le deformazioni isogonali delle superficie a curvatura costante in geometria ellittica ed iperbolica , 1911 .
[17] G. M.,et al. A Treatise on the Differential Geometry of Curves and Surfaces , 1910, Nature.
[18] Nouvelles Annales de Mathématiques , 2022 .
[19] G. Darboux. Leçons sur la théorie générale des surfaces , 1887 .
[20] Nicolas Nicolaïdès,et al. Mémoire sur la théorie générale des surfaces , 1864 .