The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation1

An introduction to the early operational capabilities of the Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) scientific instrument at the European X-ray Free Electron Laser facility is presented.

[1]  Anton Barty,et al.  Automated identification and classification of single particle serial femtosecond X-ray diffraction data. , 2014, Optics express.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Klaus Giewekemeyer,et al.  Detector Geometries for Coherent X-Ray Diffractive Imaging at the SPB Instrument , 2013 .

[4]  Anton Barty,et al.  Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein , 2016, Science.

[5]  Roberto Dinapoli,et al.  The Adaptive Gain Integrating Pixel Detector at the European XFEL , 2018, Journal of synchrotron radiation.

[6]  Marcin Sikorski,et al.  Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser , 2015, Scientific reports.

[7]  Arata Tsukamoto,et al.  Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser. , 2015, The Review of scientific instruments.

[8]  Veit Elser,et al.  Reconstruction algorithm for single-particle diffraction imaging experiments. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Garth J. Williams,et al.  Serial Femtosecond Crystallography of G Protein–Coupled Receptors , 2013, Science.

[10]  Anton Barty,et al.  Single-particle imaging without symmetry constraints at an X-ray free-electron laser , 2018, IUCrJ.

[11]  Anton Barty,et al.  Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging , 2018, IUCrJ.

[12]  K. Schmidt,et al.  Gas dynamic virtual nozzle for generation of microscopic droplet streams , 2008, 0803.4181.

[13]  Georg Weidenspointner,et al.  Time-resolved protein nanocrystallography using an X-ray free-electron laser , 2012, Optics express.

[14]  Sébastien Boutet,et al.  Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation , 2015, Science.

[15]  Erik Brambrink,et al.  Pump-probe laser system at the FXE and SPB/SFX instruments of the European X-ray Free-Electron Laser Facility. , 2019, Journal of synchrotron radiation.

[16]  J. Spence,et al.  Serial crystallography at synchrotrons and X-ray lasers , 2017, IUCrJ.

[17]  T Jezynski,et al.  Versatile optical laser system for experiments at the European X-ray free-electron laser facility. , 2016, Optics express.

[18]  A. Stadler,et al.  Small-angle X-ray scattering study of the kinetics of light-dark transition in a LOV protein , 2018, PloS one.

[19]  Steffen Hauf,et al.  Megahertz serial crystallography , 2018, Nature Communications.

[20]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[21]  Anton Barty,et al.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser , 2013, Science.

[22]  Hendrik Dietz,et al.  Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch. , 2018, Nano letters.

[23]  Sébastien Boutet,et al.  The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) , 2010 .

[24]  Souichi Telada Length Standard: Effects of Air Refractivity and Vacuum for a Laser Interferometer , 2009 .

[25]  Sébastien Boutet,et al.  Characterization and use of the spent beam for serial operation of LCLS , 2015, Journal of synchrotron radiation.

[26]  T. Ishikawa,et al.  Single-shot beam-position monitor for x-ray free electron laser. , 2011, The Review of scientific instruments.

[27]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[28]  Mikako Makita,et al.  SwissFEL Aramis beamline photon diagnostics , 2018, Journal of synchrotron radiation.

[29]  Sébastien Boutet,et al.  Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser , 2016, Nature Communications.

[30]  Takashi Kameshima,et al.  A three-dimensional movie of structural changes in bacteriorhodopsin , 2016, Science.

[31]  H. N. Chapman,et al.  Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography , 2016, Nature.

[32]  Steffen Hauf,et al.  Megahertz data collection from protein microcrystals at an X-ray free-electron laser , 2018, Nature Communications.

[33]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[34]  Anton Barty,et al.  Macromolecular diffractive imaging using imperfect crystals , 2016, Nature.

[35]  M Sikorski,et al.  A versatile liquid-jet setup for the European XFEL1 , 2019, Journal of synchrotron radiation.

[36]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[37]  Matteo Levantino,et al.  Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser , 2015, Nature Communications.

[38]  Roberto Dinapoli,et al.  Characterization of AGIPD1.0: The full scale chip , 2016 .

[39]  Filipe R N C Maia,et al.  Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams , 2018, IUCrJ.

[40]  Marcin Sikorski,et al.  Demonstration of Feasibility of X-Ray Free Electron Laser Studies of Dynamics of Nanoparticles in Entangled Polymer Melts , 2014, Scientific Reports.

[41]  Osman Bilsel,et al.  Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam , 2013, Journal of synchrotron radiation.

[42]  Hirotada Ohashi,et al.  Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA , 2013 .

[43]  U. Englisch,et al.  First operation of the SASE1 undulator system of the European X-ray Free-Electron Laser. , 2019, Journal of synchrotron radiation.

[44]  Jean-Michel Claverie,et al.  Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. , 2015, Physical review letters.

[45]  A. Mozzanica,et al.  Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science , 2016, Journal of synchrotron radiation.

[46]  Nicholas K Sauter,et al.  High-speed fixed-target serial virus crystallography , 2017, Nature Methods.

[47]  Marcin Sikorski,et al.  Initial observations of the femtosecond timing jitter at the European XFEL. , 2019, Optics letters.

[48]  Anton Barty,et al.  Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses , 2017, IUCrJ.

[49]  Roberto Dinapoli,et al.  The adaptive gain integrating pixel detector , 2016 .

[50]  Anton Barty,et al.  Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals , 2017, Journal of applied crystallography.

[51]  Liubov Samoylova,et al.  Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL , 2016 .

[52]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[53]  Sébastien Boutet,et al.  A statistical approach to detect protein complexes at X-ray free electron laser facilities , 2018, Communications Physics.

[54]  Robert L Shoeman,et al.  Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers. , 2018, Optics express.

[55]  R. Santra,et al.  The linac coherent light source single particle imaging road map , 2015, Structural dynamics.

[56]  Roberto Dinapoli,et al.  The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL , 2011 .

[57]  Anton Barty,et al.  High-throughput imaging of heterogeneous cell organelles with an X-ray laser , 2014, Nature Photonics.

[58]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[59]  Veit Elser,et al.  Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames. , 2013, Optics express.

[60]  Marius Schmidt,et al.  Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography , 2013 .

[61]  Klaus Giewekemeyer,et al.  Technical Design Report: Scientific Instrument Single Particles, Clusters, and Biomolecules (SPB) , 2013 .

[62]  J. Chalupský,et al.  Fluence thresholds for grazing incidence hard x-ray mirrors , 2015 .

[63]  Thomas Weiland,et al.  XFEL: The European X-Ray Free-Electron Laser - Technical Design Report , 2006 .

[64]  Harald Sinn,et al.  Photon Beam Transport and Scientific Instruments at the European XFEL , 2017 .

[65]  Garth J. Williams,et al.  Liquid explosions induced by X-ray laser pulses , 2015, Nature Physics.

[66]  H. Sinn,et al.  The SASE1 X-ray beam transport system. , 2019, Journal of synchrotron radiation.

[67]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[68]  J. Bigot,et al.  Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses , 2004 .

[69]  Gianluca Geloni,et al.  The European X-ray Free-Electron Laser , 2015 .

[70]  Matteo Levantino,et al.  Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. , 2015, Current opinion in structural biology.