Two-dimensional nanoarchitectonics: organic and hybrid materials.

Programmed molecular assemblies with molecular-level precision have always intrigued mankind in the quest to master the art of molecular engineering. In this regard, our review seeks to highlight the state of the art in supramolecular engineering. Herein we describe two-dimensional (2D) nanoarchitectonics of organic and organic-inorganic based hybrid materials. Molecular systems ranging from simpler hydrogen bonding driven bis-acylurea and cyclic dipeptide derivatives to complex peptoids, arylenes, cucurbiturils, biphenyls, organosilicons and organometallics, which involve a delicate interplay of multiple noncovalent interactions are discussed. These specifically chosen examples illustrate the molecular design principles and synthetic protocols to realize 2D nanosheets. The description also emphasizes the wide variety of functional properties and technological implications of these 2D nanomaterials besides an outlook for future progress.

[1]  G. Riess,et al.  Micellization of block copolymers , 2003 .

[2]  A. Gast,et al.  An intriguing morphology in crystallizable block copolymers , 1993 .

[3]  Ling Zang,et al.  One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices. , 2008, Accounts of chemical research.

[4]  R. Ristl,et al.  The S-Layer Glycome—Adding to the Sugar Coat of Bacteria , 2010, International journal of microbiology.

[5]  F. Würthner,et al.  J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. , 2011, Angewandte Chemie.

[6]  T. Emrick,et al.  Nanoparticle Assembly and Transport at Liquid-Liquid Interfaces , 2003, Science.

[7]  M. Ishii,et al.  Preparation and structure of novel siloxene nanosheets. , 2005, Chemical communications.

[8]  R. Zentel,et al.  Organic nanosheets with charged surface: two dimensional self-assembly of a non-symmetric bis-acylurea with pyridyl end group , 2011 .

[9]  F. Schreiber Structure and growth of self-assembling monolayers , 2000 .

[10]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[11]  Lei Jiang,et al.  Twisted metal-amino acid nanobelts: chirality transcription from molecules to frameworks. , 2010, Journal of the American Chemical Society.

[12]  J. Sakamoto,et al.  Two-dimensional polymers: just a dream of synthetic chemists? , 2009, Angewandte Chemie.

[13]  J. Shelnutt,et al.  Self-assembly and self-metallization of porphyrin nanosheets. , 2007, Journal of the American Chemical Society.

[14]  Masashi Harada,et al.  Soft synthesis of single-crystal silicon monolayer sheets. , 2006, Angewandte Chemie.

[15]  Zhijian Chen,et al.  Self-assembled pi-stacks of functional dyes in solution: structural and thermodynamic features. , 2009, Chemical Society reviews.

[16]  Andrea Lomander,et al.  Hierarchical self-assembly of a coiled-coil peptide into fractal structure. , 2005, Nano letters.

[17]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[18]  T. Govindaraju,et al.  Engineering Molecular Organization of Naphthalenediimides: Large Nanosheets with Metallic Conductivity and Attoliter Containers , 2011 .

[19]  Zhanping Li,et al.  A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. , 2009, Angewandte Chemie.

[20]  Noriaki Hara,et al.  SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. , 2005, Analytical chemistry.

[21]  U. Sleytr,et al.  Novel biocatalysts based on S-layer self-assembly of Geobacillus stearothermophilus NRS 2004/3a: a nanobiotechnological approach. , 2007, Small.

[22]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[23]  R. Zentel,et al.  Gelling and the collective dynamics in ferroelectric liquid crystals. , 2008, Soft matter.

[24]  G. Whitesides,et al.  Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides , 1994 .

[25]  J. Lu,et al.  Molecular self-assembly and applications of designer peptide amphiphiles. , 2010, Chemical Society reviews.

[26]  C. Ratcliffe,et al.  Cucurbit[n]urils (n = 5–8): A Comprehensive Solid State Study , 2011 .

[27]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[28]  Martin D Hager,et al.  Functional soft materials from metallopolymers and metallosupramolecular polymers. , 2011, Nature materials.

[29]  Y. Tateyama,et al.  Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets. , 2009, Journal of the American Chemical Society.

[30]  C. Yoon,et al.  Synthesis of ultra-thin polypyrrole nanosheets for chemical sensor applications , 2011 .

[31]  L. Wan,et al.  A facile method for preparing one-molecule-thick free-standing organic nanosheets with a regular square shape. , 2010, Chemical Communications.

[32]  Tobin J Marks,et al.  Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. , 2007, Journal of the American Chemical Society.

[33]  J. Michl,et al.  Polysilane high polymers , 1989 .

[34]  K. Sun,et al.  Fine-tuned nanostructures assembled from L-lysine-functionalized perylene bisimides. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[35]  K. Nakanishi,et al.  Synthesis and optical properties of monolayer organosilicon nanosheets. , 2010, Journal of the American Chemical Society.

[36]  U. Waghmare,et al.  Chemical storage of hydrogen in few-layer graphene , 2011, Proceedings of the National Academy of Sciences.

[37]  C. Pedone,et al.  Crystal and molecular structure of trans-3,6-dimethyl-2,5-piperazinedione (L-alanyl-D-alanine 2,5-diketopiperazine) , 1969 .

[38]  K. Müllen,et al.  Two-dimensional nanostructures from positively charged polycyclic aromatic hydrocarbons. , 2011, Angewandte Chemie.

[39]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[40]  Tatsuya Shimoda,et al.  Solution-processed silicon films and transistors , 2006, Nature.

[41]  D. Pum,et al.  Crystalline bacterial cell surface layers (s layers): from supramolecular cell structure to biomimetics and nanotechnology. , 1999, Angewandte Chemie.

[42]  Seth R. Marder,et al.  n‐Type Organic Semiconductors in Organic Electronics , 2010, Advanced materials.

[43]  R. Zuckermann,et al.  Shaken, not stirred: collapsing a peptoid monolayer to produce free-floating, stable nanosheets. , 2011, Journal of the American Chemical Society.

[44]  S. Langford,et al.  Chemistry of naphthalene diimides. , 2008, Chemical Society reviews.

[45]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[46]  Julio Gómez-Herrero,et al.  Single layers of a multifunctional laminar Cu(I,II) coordination polymer. , 2010, Chemical communications.

[47]  Zhenan Bao,et al.  High‐Performance Air‐Stable n‐Type Organic Transistors Based on Core‐Chlorinated Naphthalene Tetracarboxylic Diimides , 2010 .

[48]  Ayyappanpillai Ajayaghosh,et al.  Self-assembly of thienylenevinylene molecular wires to semiconducting gels with doped metallic conductivity. , 2010, Journal of the American Chemical Society.

[49]  George G. Malliaras,et al.  Charge transport in doped organic semiconductors , 2003 .

[50]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  B. Feringa,et al.  Chiral Recognition in Bis-Urea-Based Aggregates and Organogels through Cooperative Interactions. , 2001, Angewandte Chemie.

[52]  Y. Bando,et al.  MoS2 nanoflowers and their field-emission properties , 2003 .

[53]  Katsuhiko Ariga,et al.  Two-dimensional nanoarchitectonics based on self-assembly. , 2010, Advances in colloid and interface science.

[54]  M. Prato,et al.  Synthesis, Chiroptical Properties, and Configurational Assignment of Fulleroproline Derivatives and Peptides , 1996 .

[55]  K A Dill,et al.  Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Yao,et al.  Phase- and Shape-Controlled Synthesis of Single Crystalline Perylene Nanosheets and Its Optical Properties , 2009 .

[57]  D. Reinhoudt,et al.  Supramolecular chemistry in water. , 2007, Angewandte Chemie.

[58]  W. Eck,et al.  Nanostructuring of silicon by electron-beam lithography of self-assembled hydroxybiphenyl monolayers , 2003 .

[59]  P. Messner,et al.  Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. , 2004, Glycobiology.

[60]  C. Che,et al.  Photoresponsive supramolecular organometallic nanosheets induced by Pt(II)...Pt(II) and C-H...pi interactions. , 2009, Angewandte Chemie.

[61]  M. Grunze,et al.  Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography , 1999 .

[62]  Mina Han,et al.  Anisotropic two-dimensional sheets assembled from rod-shaped metal complexes. , 2012, Chemical communications.

[63]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[64]  Ashley D. Duffitt,et al.  Gene Expression during Survival of Escherichia coli O157:H7 in Soil and Water , 2010, International journal of microbiology.

[65]  Daoben Zhu,et al.  Micro- and nanocrystals of organic semiconductors. , 2010, Accounts of chemical research.

[66]  W. Eck,et al.  Freestanding Nanosheets from Crosslinked Biphenyl Self‐Assembled Monolayers , 2005 .

[67]  I. Snook,et al.  The electronic and structural properties of novel organomodified Si nanosheets. , 2011, Physical chemistry chemical physics : PCCP.

[68]  R. Bhosale,et al.  Supramolecular n/p-heterojunction photosystems with oriented multicolored antiparallel redox gradients (OMARG-SHJs). , 2010, Chemical Society reviews.

[69]  A. Stemmer,et al.  Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. , 2011, Angewandte Chemie.

[70]  S. Yamaguchi,et al.  Silicon nanosheets and their self-assembled regular stacking structure. , 2010, Journal of the American Chemical Society.

[71]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[72]  T. Govindaraju,et al.  A bio-inspired design strategy: Organization of tryptophan-appended naphthalenediimide into well-defined architectures induced by molecular interactions. , 2011, Nanoscale.

[73]  M. Wasielewski,et al.  Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. , 2009, Accounts of chemical research.

[74]  Ryan A. Mesch,et al.  Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. , 2010, Nature materials.

[75]  T. Govindaraju,et al.  Spontaneous self-assembly of aromatic cyclic dipeptide into fibre bundles with high thermal stability and propensity for gelation , 2011 .

[76]  C. Rao,et al.  Metal carboxylates with open architectures. , 2004, Angewandte Chemie.

[77]  T. Govindaraju,et al.  Covalent modification and exfoliation of graphene oxide using ferrocene. , 2010, Nanoscale.

[78]  J. Tse,et al.  Layered polysilane: thermolysis and photoluminescence , 1998 .

[79]  Y. Chau,et al.  Self-assembled peptide nanorods as building blocks of fractal patterns , 2009 .

[80]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[81]  Ki‐Hyun Kim,et al.  Two-dimensional self-assembly of disulfide functionalized bis-acylurea: a nanosheet template for gold nanoparticle arrays. , 2010, Chemical communications.

[82]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[83]  C N R Rao,et al.  Graphene analogues of BN: novel synthesis and properties. , 2010, ACS nano.

[84]  R. Zentel,et al.  Two‐Dimensional Aggregation of Organogelators Induced by Biaxial Hydrogen‐Bonding Gives Supramolecular Nanosheets , 2007 .

[85]  A. Govindaraj,et al.  Graphene: the new two-dimensional nanomaterial. , 2009, Angewandte Chemie.

[86]  H. Atreya,et al.  Spontaneous self-assembly of designed cyclic dipeptide (Phg-Phg) into two-dimensional nano- and mesosheets , 2011 .

[87]  S. D. Hudson,et al.  Poly(oxazolines)s with tapered minidendritic side groups. The simplest cylindrical models to investigate the formation of two-dimensional and three-dimensional order by direct visualization. , 2001, Biomacromolecules.

[88]  Ana B. Descalzo,et al.  The supramolecular chemistry of organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[89]  R. Nolte,et al.  Molecular Materials by Self‐Assembly of Porphyrins, Phthalocyanines, and Perylenes , 2006 .

[90]  K. Dill,et al.  Biomimetic nanostructures: creating a high-affinity zinc-binding site in a folded nonbiological polymer. , 2008, Journal of the American Chemical Society.

[91]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[92]  Eric Masson,et al.  Cucurbituril chemistry: a tale of supramolecular success , 2012 .

[93]  M. Sathish,et al.  Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface. , 2007, Journal of the American Chemical Society.