Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation

With the availability of the huge amounts of data produced by current and future large multiband photometric surveys, photometric redshifts have become a crucial tool for extragalactic astronomy and cosmology. In this paper we present a novel method, called Weak Gated Experts (WGE), which allows us to derive photometric redshifts through a combination of data mining techniques. The WGE, like many other machine learning techniques, is based on the exploitation of a spectroscopic knowledge base composed by sources for which a spectroscopic value of the redshift is available. This method achieves a variance σ^2(Δz) = 2.3 × 10^(−4) [σ^2(Δz) = 0.08, where Δz=z_(phot)−z_(spec)] for the reconstruction of the photometric redshifts for the optical galaxies from the Sloan Digital Sky Survey (SDSS) and for the optical quasars, respectively, while the root mean square (rms) of the Δz variable distributions for the two experiments is, respectively, equal to 0.021 and 0.35. The WGE provides also a mechanism for the estimation of the accuracy of each photometric redshift. We also present and discuss the catalogues obtained for the optical SDSS galaxies, for the optical candidate quasars extracted from the Data Release 7 of SDSS photometric data set (the sample of SDSS sources on which the accuracy of the reconstruction has been assessed is composed of bright sources, for a subset of which spectroscopic redshifts have been measured) and for optical SDSS candidate quasars observed by GALEX in the ultraviolet range. The WGE method exploits the new technological paradigm provided by the virtual observatory and the emerging field of astroinformatics.

[1]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[2]  Ofer Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .

[3]  Robert J. Brunner,et al.  Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX , 2008, 0804.3413.

[4]  D. Wake,et al.  MegaZ-LRG:a photometric redshift catalogue of one million SDSS luminous red galaxies , 2006, astro-ph/0607630.

[5]  N. Davey,et al.  Photometric redshift estimation using Gaussian processes , 2009 .

[6]  Alexander S. Szalay,et al.  Photometric redshifts from reconstructed quasar templates , 2001 .

[7]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[8]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[9]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[10]  Kirk D. Borne,et al.  Astroinformatics: A 21st Century Approach to Astronomy , 2009, ArXiv.

[11]  Department of Physics,et al.  Luminosity Functions from Photometric Redshifts I: Techniques , 1996 .

[12]  Ashok N. Srivastava,et al.  Nonlinear gated experts for time series: discovering regimes and avoiding overfitting , 1995, Int. J. Neural Syst..

[13]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[14]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[15]  D. Thompson,et al.  PHOTOMETRIC REDSHIFT AND CLASSIFICATION FOR THE XMM–COSMOS SOURCES , 2008, 0809.2098.

[16]  Y. Wadadekar Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.

[17]  Michigan.,et al.  Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.

[18]  A. Amara,et al.  Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry , 2007, 0705.1437.

[19]  Alexander S. Szalay,et al.  RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS , 2010 .

[20]  Canada.,et al.  Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.

[21]  M. Paolillo,et al.  The properties of the heterogeneous Shakhbazyan groups of galaxies in the SDSS , 2009, 0903.1093.

[22]  A. Szalay,et al.  GALEX–SDSS CATALOGS FOR STATISTICAL STUDIES , 2009, 0904.1392.

[23]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[24]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[25]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[26]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[27]  G. Longo,et al.  Mining the SDSS Archive. I. Photometric Redshifts in the Nearby Universe , 2007 .

[28]  Kirk D. Borne Astroinformatics: data-oriented astronomy research and education , 2010, Earth Sci. Informatics.

[29]  A. Szalay,et al.  Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.

[30]  Enn Saar,et al.  Recovering the real-space correlation function from photometric redshift surveys , 2008, 0812.4226.

[31]  Astronomy,et al.  Photometric Redshift Estimation Using Spectral Connectivity Analysis , 2009, 0906.0995.

[32]  H. Yee,et al.  FINDING GALAXY GROUPS IN PHOTOMETRIC-REDSHIFT SPACE: THE PROBABILITY FRIENDS-OF-FRIENDS ALGORITHM , 2008, 0801.2410.

[33]  M. Way,et al.  Novel Methods for Predicting Photometric Redshifts from Broadband Photometry Using Virtual Sensors , 2006 .

[34]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[35]  R. Quadri,et al.  QUANTIFYING PHOTOMETRIC REDSHIFT ERRORS IN THE ABSENCE OF SPECTROSCOPIC REDSHIFTS , 2009, 0910.2704.

[36]  N. A. Walton,et al.  Quasar candidates selection in the Virtual Observatory era , 2008, 0805.0156.

[37]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[38]  Alexander G. Gray,et al.  Efficient photometric selection of quasars from the sloan digital sky survey: 100,000 z < 3 quasars from data release one , 2004 .

[39]  A. Fontana,et al.  Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS , 2003, astro-ph/0312064.

[40]  Patrick Petitjean,et al.  Artificial neural networks for quasar selection and photometric redshift determination , 2010 .

[41]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[42]  R. Nichol,et al.  The Application of Photometric Redshifts to the SDSS Early Data Release , 2002, astro-ph/0211080.