Mesenteric lymph node granulomatous lesions in naturally infected wild boar (Sus scrofa) in Portugal--Histological, immunohistochemical and molecular aspects.

[1]  M. Hanzlíková,et al.  Wild boar (Sus scrofa) as a possible vector of mycobacterial infections: review of literature and critical analysis of data from Central Europe between 1983 to 2001 , 2018 .

[2]  I. Pavlik,et al.  A mixed infection of Mycobacterium avium subsp. paratuberculosis and M. a. hominissuis in one red deer ( Cervus elaphus ) studied by IS 900 BstE II and IS 1245 Pvu II RFLP analyses: a case report , 2018 .

[3]  A. Coelho,et al.  Disseminated Mycobacterium bovis infection in red foxes (Vulpes vulpes) with cerebral involvement found in Portugal. , 2014, Vector borne and zoonotic diseases.

[4]  D. Risco,et al.  Immunopathology of granulomas produced by Mycobacterium bovis in naturally infected wild boar. , 2013, Veterinary immunology and immunopathology.

[5]  A. Coelho,et al.  Mycobacterium bovis in an Egyptian mongoose , 2013, Veterinary Record.

[6]  I. Hwang,et al.  Mycobacterium avium paratuberculosis in Wild Boars in Korea , 2013, Journal of wildlife diseases.

[7]  C. Gortázar,et al.  Wild boar tuberculosis in Iberian Atlantic Spain: a different picture from Mediterranean habitats , 2013, BMC Veterinary Research.

[8]  N. Smith,et al.  Comparative pathology of the natural infections by Mycobacterium bovis and by Mycobacterium caprae in wild boar (Sus scrofa). , 2013, Transboundary and emerging diseases.

[9]  A. Coelho,et al.  Mycobacterium avium Complex in Domestic and Wild Animals , 2013 .

[10]  A. Coelho,et al.  Granulomatous Lesions and Mycobacterium avium subsp. paratuberculosis in Portuguese Wild Boars (Sus scrofa) , 2013 .

[11]  M. Pires,et al.  Diffuse lymphadenitis and disseminated Mycobacterium avium subsp. paratuberculosis infection in two wild Eurasian otters (Lutra lutra L. 1758) , 2013 .

[12]  N. Smith,et al.  Histological and immunohistochemical characterisation of Mycobacterium bovis induced granulomas in naturally infected fallow deer (Dama dama). , 2012, Veterinary immunology and immunopathology.

[13]  M. Ribeiro,et al.  Occurrence of Mycobacterium spp. and other pathogens in lymph nodes of slaughtered swine and wild boars (Sus scrofa). , 2011, Research in veterinary science.

[14]  M. V. Cunha,et al.  MIRU-VNTR typing adds discriminatory value to groups of Mycobacterium bovis and Mycobacterium caprae strains defined by spoligotyping. , 2010, Veterinary microbiology.

[15]  W. Gavin,et al.  Scientific review on Tuberculosis in wildlife in the EU , 2009 .

[16]  S. Svenson,et al.  EPIDEMIOLOGY OF MYCOBACTERIUM BOVIS INFECTION IN WILD BOAR (SUS SCROFA) FROM PORTUGAL , 2009, Journal of wildlife diseases.

[17]  M. Chambers Review of the diagnosis and study of tuberculosis in non-bovine wildlife species using immunological methods. , 2009, Transboundary and emerging diseases.

[18]  M. Chambers,et al.  Animal-side serologic assay for rapid detection of Mycobacterium bovis infection in multiple species of free-ranging wildlife. , 2008, Veterinary microbiology.

[19]  M. Bartoš,et al.  Strategy for the detection and differentiation of Mycobacterium avium species in isolates and heavily infected tissues. , 2008, Research in veterinary science.

[20]  M. Stevenson,et al.  Risk factors for bovine tuberculosis in New Zealand cattle farms and their relationship with possum control strategies. , 2008, Preventive veterinary medicine.

[21]  B. Durand,et al.  Patterns of lesions of bovine tuberculosis in wild red deer and wild boar , 2008, Veterinary Record.

[22]  S. Zanetti,et al.  Identification of mycobacterial infections in wild boars in Northern Sardinia, Italy. , 2008, Acta veterinaria Hungarica.

[23]  M. Watson,et al.  Granulocyte chemotactic properties of M. tuberculosis versus M. bovis-infected bovine alveolar macrophages. , 2008, Molecular immunology.

[24]  E. Ferroglio,et al.  Identification of Mycobacterium avium subsp. paratuberculosis in wild cervids (Cervus elaphus hippelaphus and Capreolus capreolus) from Northwestern Italy , 2008, European Journal of Wildlife Research.

[25]  C. Gortázar,et al.  Lesions associated with Mycobacterium tuberculosis complex infection in the European wild boar. , 2007, Tuberculosis.

[26]  N. Walker,et al.  Bovine tuberculosis infection in wild mammals in the South-West region of England: a survey of prevalence and a semi-quantitative assessment of the relative risks to cattle. , 2007, Veterinary journal.

[27]  P. V. van Helden,et al.  Differentiation of Mycobacterium tuberculosis complex by PCR amplification of genomic regions of difference. , 2006, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[28]  G. Hewinson,et al.  Immunohistochemical markers augment evaluation of vaccine efficacy and disease severity in bacillus Calmette-Guerin (BCG) vaccinated cattle challenged with Mycobacterium bovis. , 2006, Veterinary immunology and immunopathology.

[29]  A. Tato,et al.  Bovine tuberculosis in wild boar (Sus scrofa), red deer (Cervus elaphus) and cattle (Bos taurus) in a Mediterranean ecosystem (1992-2004). , 2006, Preventive veterinary medicine.

[30]  L. Corner The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk. , 2006, Veterinary microbiology.

[31]  G. Hewinson,et al.  Advanced Granulomatous Lesions in Mycobacterium bovis-infected Cattle are Associated with Increased Expression of Type I Procollagen, γδ (WC1+) T Cells and CD 68+ Cells , 2005 .

[32]  W. C. Losinger Economic impacts of reduced milk production associated with epidemiological risk factors for Johne's disease on dairy operations in the USA , 2005, Journal of Dairy Research.

[33]  J. Álvarez,et al.  Mycobacterium avium subspecies paratuberculosis in fallow deer and wild boar in Spain , 2005, Veterinary Record.

[34]  R. Skuce,et al.  Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis , 2005, Immunology.

[35]  J. Griffin,et al.  Mycobacterial diseases of deer , 2004, New Zealand veterinary journal.

[36]  S. Lavín,et al.  Paratuberculosis in Free-Ranging Fallow Deer in Spain , 2002, Journal of wildlife diseases.

[37]  T. Cooley,et al.  Tuberculous Lesions in Free-Ranging White-Tailed Deer in Michigan , 2001, Journal of wildlife diseases.

[38]  G. Delsol,et al.  A New Monoclonal Anti-CD3∊ Antibody Reactive on Paraffin Sections , 2000, Applied immunohistochemistry & molecular morphology : AIMM.

[39]  O. Bottasso,et al.  Influence of disease severity on nitrite and cytokine production by peripheral blood mononuclear cells (PBMC) from patients with pulmonary tuberculosis (TB) , 2000, Clinical and experimental immunology.

[40]  V. Dini,et al.  Detection of Mycobacterium tuberculosis complex in lymph nodes of wild boar (Sus scrofa) by a target-amplified test system. , 2000, Journal of veterinary medicine. B, Infectious diseases and veterinary public health.

[41]  V. Boussiotis,et al.  IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. , 2000, The Journal of clinical investigation.

[42]  S. D. Neill,et al.  Dynamic changes in circulating and antigen‐responsive T‐cell subpopulations post‐Mycobacterium bovis infection in cattle , 1996, Immunology.

[43]  E. Jaffe,et al.  CD79a: a novel marker for B-cell neoplasms in routinely processed tissue samples. , 1995, Blood.

[44]  R. Juste,et al.  Lack of mycobactin dependence of mycobacteria isolated on Middlebrook 7H11 from clinical cases of ovine paratuberculosis. , 1995, Veterinary microbiology.

[45]  J. Haagsma,et al.  Paratuberculosis in farmed red deer (Cervus elaphus) in Ireland , 1993, Veterinary Record.

[46]  R. Juste,et al.  Comparison of different media for the isolation of small ruminant strains of Mycobacterium paratuberculosis. , 1991, Veterinary microbiology.

[47]  V. Ritacco,et al.  Reciprocal cellular and humoral immune responses in bovine tuberculosis. , 1991, Research in veterinary science.

[48]  S. Wilton,et al.  Use of DNA amplification for the rapid identification of Mycobacterium bovis. , 1991, Veterinary microbiology.