A new approach of cooperative interval games: The interval core and Shapley value revisited
暂无分享,去创建一个
[1] Rodica Branzei,et al. The interval Shapley value: an axiomatization , 2010, Central Eur. J. Oper. Res..
[2] Francesc Llerena,et al. Convex decomposition of games and axiomatizations of the core and the D-core , 2007, Int. J. Game Theory.
[3] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[4] L. Shapley. Cores of convex games , 1971 .
[5] R. Branzei,et al. Bankruptcy problems with interval uncertainty , 2008 .
[6] R. Branzei,et al. Shapley-like values for interval bankruptcy games , 2003 .
[7] B. Peleg. On the reduced game property and its converse , 1987 .
[8] Lloyd S. Shapley,et al. On balanced sets and cores , 1967 .
[9] Rodica Branzei,et al. Cooperative interval games: a survey , 2010, Central Eur. J. Oper. Res..
[10] Rodica Branzei,et al. Convex Interval Games , 2009, Adv. Decis. Sci..
[11] Cho-Hoi Hui,et al. Valuing Time-Dependent CEV Barrier Options , 2009, Adv. Decis. Sci..
[12] L. Shapley. A Value for n-person Games , 1988 .
[13] Rodica Branzei,et al. How to Handle Interval solutions for Cooperative Interval Games , 2010, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[14] R. Branzei,et al. Set-valued solution concepts using interval-type payoffs for interval games , 2011 .