Superreplication under Volatility Uncertainty for Measurable Claims

We establish the duality-formula for the superreplication price in a setting of volatility uncertainty which includes the example of "random $G$-expectation". In contrast to previous results, the contingent claim is not assumed to be quasi-continuous.

[1]  J. Jacod,et al.  étude des solutions extrémales et représentation intégrale des solutions pour certains problèmes de martingales , 1977 .

[2]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[3]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[4]  K. Bichteler,et al.  Stochastic Integration and $L^p$-Theory of Semimartingales , 1981 .

[5]  M. K rn,et al.  Stochastic Optimal Control , 1988 .

[6]  P. Protter Stochastic integration and differential equations , 1990 .

[7]  H. Soner,et al.  Dynamic programming for stochastic target problems and geometric flows , 2002 .

[8]  S. Peng Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation , 2006, math/0601699.

[9]  L. Denis,et al.  A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.

[10]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[11]  J. K. Hunter,et al.  Measure Theory , 2007 .

[12]  S. Peng G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.

[13]  H. Soner,et al.  Quasi-sure Stochastic Analysis through Aggregation , 2010, 1003.4431.

[14]  H. Soner,et al.  Dual Formulation of Second Order Target Problems , 2010, 1003.6050.

[15]  Nizar Touzi,et al.  Martingale Representation Theorem for the G-Expectation , 2010 .

[16]  Yongsheng Song,et al.  Some properties on G-evaluation and its applications to G-martingale decomposition , 2010, 1001.2802.

[17]  Marcel Nutz,et al.  A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations , 2011, ArXiv.

[18]  H. M. Soner,et al.  Martingale Representation Theorem for the G-Expectation , 2010, 1001.3802.

[19]  Marcel Nutz,et al.  Superhedging and Dynamic Risk Measures Under Volatility Uncertainty , 2010, SIAM J. Control. Optim..

[20]  Marcel Nutz Pathwise construction of stochastic integrals , 2011, 1108.2981.

[21]  Marcel Nutz,et al.  Random G-expectations. , 2010, 1009.2168.

[22]  N. Touzi,et al.  On the Robust superhedging of measurable claims , 2013, 1302.1850.

[23]  R. Handel,et al.  Constructing Sublinear Expectations on Path Space , 2012, 1205.2415.

[24]  S. Peng Nonlinear Expectations and Stochastic Calculus under Uncertainty , 2010, Probability Theory and Stochastic Modelling.