Analysis of Impact of TXOP Allocation on IEEE 802.11e EDCA under Variable Network Load

In this paper, we investigate the impact of transmission opportunity (TXOP), arbitration interframe space (AIFS), and contention window on the performance of an IEEE 802.11e cluster with four traffic classes under Poisson frame arrivals. We derive an analytical model of the cluster using queuing model of individual nodes, discrete time Markov chain, and probabilistic modeling of the backoff process. The analytical model demonstrates the complex interaction between TXOP, on one side, and AIFS and contention window, on the other. We derive saturation and stability points for all traffic classes and discuss their dependency on TXOP allocations. Our results indicate that use of nonzero TXOP parameter under Poisson frame arrivals improves performance slightly by separating points of saturation and instability. More substantial performance improvements should be expected by deploying TXOP differentiation under bursty traffic. Since all traffic classes need to operate in stable, nonsaturated regime, this work has important implications for the design of congestion control and admission control schemes in IEEE 802.11e clusters.

[1]  Olav N. Østerbø,et al.  Non-saturation and saturation analysis of IEEE 802.11e EDCA with starvation prediction , 2005, MSWiM '05.

[2]  Dimitris Vassis,et al.  Delay Performance Analysis and Evaluation of IEEE 802.11e EDCA in Finite Load Conditions , 2005, Wirel. Pers. Commun..

[3]  Hai Le Vu,et al.  An Access Delay Model for IEEE 802.11e EDCA , 2009, IEEE Transactions on Mobile Computing.

[4]  Olav N. Østerbø,et al.  Analysis of the Total Delay of IEEE 802.11e EDCA and 802.11 DCF , 2006, 2006 IEEE International Conference on Communications.

[5]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[6]  Nada Chendeb Taher,et al.  A complete and accurate analytical model for 802.11e EDCA under saturation conditions , 2009, 2009 IEEE/ACS International Conference on Computer Systems and Applications.

[7]  Ahmed H. Tewfik,et al.  Toward accurate modeling of the IEEE 802.11e EDCA under finite load and error-prone channel , 2008, IEEE Transactions on Wireless Communications.

[8]  Shivendra S. Panwar,et al.  Throughput and delay analysis for the IEEE 802.11e enhanced distributed channel access , 2006, IEEE Transactions on Communications.

[9]  Xin Wang,et al.  IEEE 802.11e Enhanced Distributed Channel Access (EDCA) Throughput Analysis , 2006, 2006 IEEE International Conference on Communications.

[10]  Vincent W. S. Wong,et al.  Saturation throughput of IEEE 802.11e EDCA based on mean value analysis , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[11]  Michael Devetsikiotis,et al.  A unified model for the performance analysis of IEEE 802.11e EDCA , 2005, IEEE Transactions on Communications.

[12]  Olav N. Østerbø,et al.  WLAN QoS Analysis-A New Modelling Approach for 802.11e , 2008 .

[13]  Jae Young Lee,et al.  A performance analysis model for IEEE 802.11e EDCA under saturation condition , 2009, IEEE Trans. Commun..

[14]  Joseph Bak,et al.  Complex Analysis , 1982 .

[15]  P. Peebles Probability, Random Variables and Random Signal Principles , 1993 .

[16]  Ender Ayanoglu,et al.  Modeling the 802.11e Enhanced Distributed Channel Access Function , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[17]  Yang Xiao,et al.  Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs , 2005, IEEE Transactions on Wireless Communications.