Restriction Analysis of β‐Tubulin Gene for Differentiation of the Common Pathogenic Dermatophytes

Identification of dermatophytes at the species level, relying on macro‐ and microscopic properties of the colonies is time‐consuming, questioned in many circumstances, and requires considerable expertise. In this study, we examined the potency of a new genetic marker, β‐tubulin (BT2) gene, for differentiation of dermatophytes in an in silico and experimental restriction fragment length polymorphism (RFLP) profile.

[1]  M. Eshraghian,et al.  Molecular epidemiology of dermatophytosis in Tehran, Iran, a clinical and microbial survey. , 2013, Medical mycology.

[2]  G. S. de Hoog,et al.  Discrimination of Trichophyton tonsurans and Trichophyton equinum by PCR-RFLP and by β-tubulin and translation elongation factor 1-α sequencing. , 2012, Medical mycology.

[3]  M. Eshraghian,et al.  Use of Single-enzyme PCR-restriction Digestion Barcode Targeting the Internal Transcribed Spacers (ITS rDNA) to Identify Dermatophyte Species , 2012, Iranian journal of public health.

[4]  G. S. de Hoog,et al.  Multilocus differentiation of the related dermatophytes Microsporum canis, Microsporum ferrugineum and Microsporum audouinii. , 2012, Journal of medical microbiology.

[5]  M. Vaneechoutte,et al.  Evaluation of internal transcribed spacer 2-RFLP analysis for the identification of dermatophytes. , 2010, Journal of medical microbiology.

[6]  T. Kanbe Molecular Approaches in the Diagnosis of Dermatophytosis , 2008, Mycopathologia.

[7]  R. Summerbell,et al.  The New Species Concept in Dermatophytes—a Polyphasic Approach , 2008, Mycopathologia.

[8]  S. A. Ghiasian,et al.  Dermatophytoses in outpatients attending the Dermatology Center of Avicenna Hospital in Qazvin, Iran , 2008, Mycoses.

[9]  T. Sorrell,et al.  Rapid Identification and Differentiation of Trichophyton Species, Based on Sequence Polymorphisms of the Ribosomal Internal Transcribed Spacer Regions, by Rolling-Circle Amplification , 2008, Journal of Clinical Microbiology.

[10]  E. Kuijper,et al.  Diagnosis of common dermatophyte infections by a novel multiplex real‐time polymerase chain reaction detection/identification scheme , 2007, The British journal of dermatology.

[11]  R. Summerbell,et al.  Dermatophytes: recognizing species of clonal fungi. , 2006, Medical mycology.

[12]  A. Mahmoudabadi A study of dermatophytosis in South West of Iran (Ahwaz) , 2005, Mycopathologia.

[13]  M. Wingfield,et al.  A PCR-RFLP based diagnostic technique to rapidly identify Seiridium species causing cypress canker , 2004, Mycologia.

[14]  T. Kanbe,et al.  PCR and PCR-RFLP techniques targeting the DNA topoisomerase II gene for rapid clinical diagnosis of the etiologic agent of dermatophytosis. , 2004, Journal of dermatological science.

[15]  A. Hasegawa,et al.  Molecular taxonomy of dermatophytes and related fungi by chitin synthase 1 (CHS1) gene sequences , 2004, Antonie van Leeuwenhoek.

[16]  Yasuhiro Suzuki,et al.  PCR-based identification of common dermatophyte species using primer sets specific for the DNA topoisomerase II genes. , 2003, Journal of dermatological science.

[17]  Jun-Mo Yang,et al.  Species identification and strain differentiation of dermatophyte fungi using polymerase chain reaction amplification and restriction enzyme analysis. , 2003, Journal of the American Academy of Dermatology.

[18]  C. Breuil,et al.  Species level identification of conifer associated Ceratocystis sapstain fungi by PCR-RFLP on a beta-tubulin gene fragment. , 2003, FEMS microbiology letters.

[19]  J. Dupont,et al.  ITS and β-tubulin markers help delineate Phaeoacremonium species, and the occurrence of P. parasiticum in grapevine disease in Argentina , 2002 .

[20]  M. Wingfield,et al.  β-Tubulin and histone H3 gene sequences distinguish Cryphonectria cubensis from South Africa, Asia, and South America , 2002 .

[21]  H. Ogawa,et al.  Isolation of an Intron-Containing Partial Sequence of the Gene Encoding Dermatophyte Actin (ACT) and Detection of a Fragment of the Transcript by Reverse Transcription-Nested PCR as a Means of Assessing the Viability of Dermatophytes in Skin Scales , 2001, Journal of Clinical Microbiology.

[22]  G. S. de Hoog,et al.  Molecular Taxonomy of the Trichophyton rubrum Complex , 2000, Journal of Clinical Microbiology.

[23]  A. Hasegawa,et al.  Phylogenetic Classification and Species Identification of Dermatophyte Strains Based on DNA Sequences of Nuclear Ribosomal Internal Transcribed Spacer 1 Regions , 1999, Journal of Clinical Microbiology.

[24]  C. Jackson,et al.  Species Identification and Strain Differentiation of Dermatophyte Fungi by Analysis of Ribosomal-DNA Intergenic Spacer Regions , 1999, Journal of Clinical Microbiology.

[25]  A. Hasegawa,et al.  Phylogenetic analysis of 8 dermatophyte species using chitin synthase 1 gene sequences , 1997, Mycoses.

[26]  K. O’Donnell,et al.  Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. , 1997, Molecular phylogenetics and evolution.

[27]  N. L. Glass,et al.  Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes , 1995, Applied and environmental microbiology.

[28]  R. Summerbell,et al.  The dermatophytes , 1995, Clinical microbiology reviews.