Flocks, Ovoids of Q(4,q)and Designs

We prove that an ovoid O of Q(4,q),q odd, is the Thas' ovoid associated with a semifield flock if and only if O represents, on the Klein quadric, a symplectic spread of PG(3,q), whose associated plane is a semifiled plane.

[1]  P. Dembowski Finite geometries , 1997 .

[2]  A. Barlotti,et al.  Finite Sperner spaces constructed from projective and affine spaces , 1974 .

[3]  Joseph A. Thas,et al.  Spreads and ovoids in finite generalized quadrangles , 1994 .

[4]  Guglielmo Lunardon,et al.  On Non-hyperelliptic Flocks , 1994, Eur. J. Comb..

[5]  Michael Walker A class of translation planes , 1976 .

[6]  Joseph A. Thas,et al.  Generalized Quadrangles and Flocks of Cones , 1987, Eur. J. Comb..

[7]  H. Gevaert,et al.  Flocks of quadratic cones, generalized quadrangles and translation planes , 1988 .

[8]  J. Thas,et al.  Flocks inPG(3,q) , 1979 .

[9]  Iris Bloemen Substructures and characterizations of finite generalized polygons , 1996 .

[10]  W. Kantor Ovoids and Translation Planes , 1982, Canadian Journal of Mathematics.

[11]  Joseph A. Thas Generalized Quadrangles of Order (s, s2), II , 1997, J. Comb. Theory, Ser. A.

[12]  Joseph A. Thas,et al.  Symplectic spreads in PG(3, q), inversive planes and projective planes , 1997, Discret. Math..

[13]  Joseph A. Thas,et al.  Generalized Quadrangles of Order (s, s2), I , 1994, J. Comb. Theory, Ser. A.

[14]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[15]  Norman L. Johnson,et al.  Translation planes of order q2 that admit a collineation group of order q2 , 1984 .

[16]  V. Jha,et al.  A structure theory for two-dimensional translation planes of order q2 that admit collineation groups of order q2 , 1989 .