WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies

The absolute neutrino mass scale is currently unknown, but can be constrained by cosmology. The WiggleZ high redshift, star-forming, and blue galaxy sample offers a complementary data set to previous surveys for performing these measurements, with potentially different systematics from nonlinear structure formation, redshift-space distortions, and galaxy bias. We obtain a limit of ∑m_ν<0.60  eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble parameter and the baryon acoustic oscillation scale gives ∑m_ν<0.29  eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys.

[1]  K. Subramanian,et al.  Weighing neutrinos using high redshift galaxy luminosity functions , 2011, 1104.3714.

[2]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[3]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[4]  A. Cimatti,et al.  Measuring the neutrino mass from future wide galaxy cluster catalogues , 2011, 1112.4810.

[5]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[6]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[7]  T. Schwetz,et al.  Are there sterile neutrinos at the eV scale? , 2011, Physical review letters.

[8]  M. Takada,et al.  Nonlinear power spectrum in the presence of massive neutrinos: perturbation theory approach, galaxy bias and parameter forecasts , 2009, 0907.2922.

[9]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[10]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[11]  A. Cimatti,et al.  Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys , 2010, 1012.2868.

[12]  L. Verde,et al.  Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.

[13]  Cosmology with high-redshift galaxy survey: Neutrino mass and inflation , 2005, astro-ph/0512374.

[14]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[15]  M. Takada,et al.  Impact of massive neutrinos on the nonlinear matter power spectrum. , 2008, Physical review letters.

[16]  H. Klapdor-kleingrothaus,et al.  The evidence for the observation of 0ν beta beta decay: The identification of 0ν beta beta events from the full spectra. , 2006 .

[17]  M. Gonzalez-Garcia,et al.  Updated global fit to three neutrino mixing: status of the hints of θ13 > 0 , 2010, 1001.4524.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  O. Lahav,et al.  Forecasting neutrino masses from galaxy clustering in the Dark Energy Survey combined with the Planck measurements , 2009, 0910.4714.

[20]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[21]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[22]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[23]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[24]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[25]  Shaun A. Thomas,et al.  Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey. , 2009, Physical review letters.

[26]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[27]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[28]  A. Cimatti,et al.  Effects of massive neutrinos on the large-scale structure of the Universe , 2011, 1103.0278.

[29]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[30]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[31]  O. Lahav,et al.  Neutrino masses from clustering of red and blue galaxies: a test of astrophysical uncertainties , 2010, 1006.2825.

[32]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[33]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[34]  Roman Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .