On Extracting Probability Distribution Information from Time Series

Time-series (TS) are employed in a variety of academic disciplines. In this paper we focus on extracting probability density functions (PDFs) from TS to gain an insight into the underlying dynamic processes. On discussing this “extraction” problem, we consider two popular approaches that we identify as histograms and Bandt–Pompe. We use an information-theoretic method to objectively compare the information content of the concomitant PDFs.

[1]  Massimiliano Zanin,et al.  Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review , 2012, Entropy.

[2]  Alexander N. Gorban,et al.  Entropy: The Markov Ordering Approach , 2010, Entropy.

[3]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[4]  J.J.Halliwell,et al.  Arrival Times, Complex Potentials and Decoherent Histories , 2009 .

[5]  W. J. Munro,et al.  Quantum-classical crossover of a field mode , 2007, 0710.1983.

[6]  Osvaldo A. Rosso,et al.  Randomizing nonlinear maps via symbolic dynamics , 2008 .

[7]  Osvaldo A. Rosso,et al.  Bandt–Pompe approach to the classical-quantum transition , 2007 .

[8]  Mathieu Sinn,et al.  Ordinal analysis of time series , 2005 .

[9]  Angel Plastino,et al.  Classical Limit and Chaotic Regime in a Semi-Quantum Hamiltonian , 2003, Int. J. Bifurc. Chaos.

[10]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[11]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[12]  J. Sprott Chaos and time-series analysis , 2001 .

[13]  H. Zeh Why Bohm's Quantum Theory? , 1998, quant-ph/9812059.

[14]  Araceli N. Proto,et al.  QUANTITATIVE INDICATOR FOR SEMIQUANTUM CHAOS , 1998 .

[15]  Fred Cooper,et al.  Chaos in time-dependent variational approximations to quantum dynamics , 1996, quant-ph/9610013.

[16]  Guinea,et al.  Collapse of the wave packet and chaos in a model with classical and quantum degrees of freedom. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[18]  Timothy R. C. Read,et al.  Goodness-Of-Fit Statistics for Discrete Multivariate Data , 1988 .

[19]  J. Kurths,et al.  An attractor in a solar time series , 1987 .

[20]  B. Huberman,et al.  Fluctuations and simple chaotic dynamics , 1982 .

[21]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[22]  M. G. Kendall,et al.  A Study in the Analysis of Stationary Time-Series. , 1955 .