Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS

Abstract. Daily global analyses and 5-day forecasts are generated in the context of the European Monitoring Atmospheric Composition and Climate (MACC) project using an extended version of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The IFS now includes modules for chemistry, deposition and emission of reactive gases, aerosols, and greenhouse gases, and the 4-dimensional variational data assimilation scheme makes use of multiple satellite observations of atmospheric composition in addition to meteorological observations. This paper describes the data assimilation setup of the new Composition-IFS (C-IFS) with respect to reactive gases and validates analysis fields of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2) for the year 2008 against independent observations and a control run without data assimilation. The largest improvement in CO by assimilation of Measurements of Pollution in the Troposphere (MOPITT) CO columns is seen in the lower troposphere of the Northern Hemisphere (NH) extratropics during winter, and during the South African biomass-burning season. The assimilation of several O3 total column and stratospheric profile retrievals greatly improves the total column, stratospheric and upper tropospheric O3 analysis fields relative to the control run. The impact on lower tropospheric ozone, which comes from the residual of the total column and stratospheric profile O3 data, is smaller, but nevertheless there is some improvement particularly in the NH during winter and spring. The impact of the assimilation of tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) is small because of the short lifetime of NO2, suggesting that NO2 observations would be better used to adjust emissions instead of initial conditions. The results further indicate that the quality of the tropospheric analyses and of the stratospheric ozone analysis obtained with the C-IFS system has improved compared to the previous "coupled" model system of MACC.

[1]  Merritt N. Deeter,et al.  An examination of the long-term CO records from MOPITT and IASI: Comparison of retrieval methodology , 2015 .

[2]  J. Lambert,et al.  Copernicus stratospheric ozone service, 2009–2012: validation, system intercomparison and roles of input data sets , 2015 .

[3]  F. Hendrick,et al.  Description of algorithms for co-locating and comparing gridded model data with remote-sensing observations , 2014 .

[4]  Béatrice Josse,et al.  Tropospheric chemistry in the integrated forecasting system of ECMWF , 2014 .

[5]  C. Clerbaux,et al.  On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations , 2014 .

[6]  Ilse Aben,et al.  Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI , 2014 .

[7]  J. Lambert,et al.  Copernicus atmospheric service for stratospheric ozone: validation and intercomparison of four near real-time analyses, 2009–2012 , 2014 .

[8]  W. Lahoz,et al.  Combined data assimilation of ozone tropospheric columns and stratospheric profiles in a high‐resolution CTM , 2014 .

[9]  J. Flemming,et al.  Modeling global impacts of heterogeneous loss of HO 2 on cloud droplets, ice particles and aerosols , 2014 .

[10]  Michael Sprenger,et al.  A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011 , 2014 .

[11]  M. George,et al.  On the wintertime low bias of Northern Hemisphere carbon monoxide in global model studies , 2014 .

[12]  T. Clarmann,et al.  Ten years of MIPAS measurements with ESA Level 2 processor V6 – Part 1: Retrieval algorithm and diagnostics of the products , 2013 .

[13]  J. Flemming,et al.  Volcanic sulfur dioxide plume forecasts based on UV satellite retrievals for the 2011 Grímsvötn and the 2010 Eyjafjallajökull eruption , 2013 .

[14]  L. E. Amraoui,et al.  Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model , 2013 .

[15]  K. F. Boersma,et al.  Constraints on ship NO x emissions in Europe using GEOS-Chem and OMI satellite NO 2 observations , 2013 .

[16]  S. Wofsy,et al.  Validation of MOPITT Version 5 thermal‐infrared, near‐infrared, and multispectral carbon monoxide profile retrievals for 2000–2011 , 2013 .

[17]  Yves Candau,et al.  Regional scale ozone data assimilation using an ensemble Kalman filter and the CHIMERE chemical transport model , 2013 .

[18]  Yang Zhang,et al.  Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects , 2012 .

[19]  Christian Hermans,et al.  Four years of ground-based MAX-DOAS observations of HONO and NO 2 in the Beijing area , 2012 .

[20]  Carl A. M. Brenninkmeijer,et al.  Quantifying the uncertainty in simulating global tropospheric composition due to the variability in global emission estimates of Biogenic Volatile Organic Compounds , 2012 .

[21]  Henk Eskes,et al.  Simultaneous assimilation of satellite NO 2 , O 3 , CO, and HNO 3 data for the analysis of tropospheric chemical composition and emissions , 2012 .

[22]  J. Lamarque,et al.  Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[23]  Jean-Noël Thépaut,et al.  The MACC reanalysis: an 8 yr data set of atmospheric composition , 2012 .

[24]  Adrian Doicu,et al.  Sixteen years of GOME/ERS‐2 total ozone data: The new direct‐fitting GOME Data Processor (GDP) version 5—Algorithm description , 2012 .

[25]  J. Christensen,et al.  Assimilation of OMI NO2 retrievals into the limited-area chemistry-transport model DEHM (V2009.0) with a 3-D OI algorithm , 2012 .

[26]  J. Lamarque,et al.  Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements , 2011 .

[27]  H. Eskes,et al.  Global NO x emission estimates derived from an assimilation of OMI tropospheric NO 2 columns , 2011 .

[28]  Adrian Sandu,et al.  Chemical Data Assimilation—An Overview , 2011 .

[29]  Keywan Riahi,et al.  Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period , 2011 .

[30]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[31]  Rossana Dragani,et al.  On the quality of the ERA‐Interim ozone reanalyses: comparisons with satellite data , 2011 .

[32]  Andreas Hilboll,et al.  An improved NO 2 retrieval for the GOME-2 satellite instrument , 2011 .

[33]  J. F. Meirink,et al.  Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations , 2011 .

[34]  Merritt N. Deeter,et al.  Ten years of CO emissions as seen from Measurements of Pollution in the Troposphere (MOPITT) , 2011 .

[35]  Isabelle Herlin,et al.  Assimilation of OMI NO2 retrievals into a regional chemistry-transport model for improving air quality forecasts over Europe , 2011 .

[36]  Henk Eskes,et al.  Multi sensor reanalysis of total ozone , 2010 .

[37]  T. Borsdorff,et al.  Validation of five years (2003–2007) of SCIAMACHY CO total column measurements using ground-based spectrometer observations , 2010 .

[38]  Peter Bergamaschi,et al.  The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0 , 2010 .

[39]  Merritt N. Deeter,et al.  The MOPITT version 4 CO product: Algorithm enhancements, validation, and long‐term stability , 2010 .

[40]  T. Kitada Chemical Transport Model , 2010 .

[41]  Harald Flentje,et al.  Coupling global chemistry transport models to ECMWF’s integrated forecast system , 2009 .

[42]  Gilles Foret,et al.  Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models , 2009 .

[43]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[44]  M. Buchwitz,et al.  Global Estimates of CO Sources with High Resolution by Adjoint Inversion of Multiple Satellite Datasets (MOPITT, AIRS, SCIAMACHY, TES) , 2009 .

[45]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[46]  M. Kiefer,et al.  Retrieval of temperature, H 2 O, O 3 , HNO 3 , CH 4 , N 2 O, ClONO 2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements , 2009 .

[47]  M. Buchwitz,et al.  Assimilation of SCIAMACHY total column CO observations: Global and regional analysis of data impact , 2009 .

[48]  Arnold Heemink,et al.  A multi-component data assimilation experiment directed to sulphur dioxide and sulphate over Europe , 2009 .

[49]  Yuhang Wang,et al.  Assimilated inversion of NOx emissions over east Asia using OMI NO2 column measurements , 2009 .

[50]  F. Chevallier,et al.  Four-dimensional data assimilation of atmospheric CO2 using AIRS observations , 2009 .

[51]  K. Bowman,et al.  Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America , 2009 .

[52]  GEMS data assimilation system for chemically reactive gases , 2009 .

[53]  L. Jones,et al.  The MACC data assimilation system for chemically reactive gases , 2009 .

[54]  M. V. Roozendael,et al.  FRESCO+: an improved O 2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals , 2008 .

[55]  Simon Chabrillat,et al.  4D-Var assimilation of MIPAS chemical observations: ozone and nitrogen dioxide analyses , 2008 .

[56]  Kevin W. Bowman,et al.  Estimating the summertime tropospheric ozone distribution over North America through assimilation of observations from the Tropospheric Emission Spectrometer , 2008 .

[57]  D. Hauglustaine,et al.  African CO emissions between years 2000 and 2006 as estimated from MOPITT observations , 2008 .

[58]  A. Hollingsworth,et al.  Toward a Monitoring and Forecasting System For Atmospheric Composition: The GEMS Project , 2008 .

[59]  Kazuhiro Tsuboi,et al.  © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics , 2008 .

[60]  Emil M. Constantinescu,et al.  Predicting air quality: Improvements through advanced methods to integrate models and measurements , 2008, J. Comput. Phys..

[61]  B. T. Marshall,et al.  Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE) , 2008 .

[62]  Ulrich Platt,et al.  Differential optical absorption spectroscopy , 2008 .

[63]  Teresa L. Campos,et al.  Evaluating Model Performance of an Ensemble-based Chemical Data Assimilation System During INTEX-B Field Mission , 2007 .

[64]  T. Diehl,et al.  Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model , 2007 .

[65]  Hendrik Elbern,et al.  Emission rate and chemical state estimation by 4-dimensional variational inversion , 2007 .

[66]  A. Simmons,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics , 2007 .

[67]  Adrian Sandu,et al.  Four-dimensional data assimilation experiments with International Consortium for Atmospheric Research on Transport and Transformation ozone measurements , 2007 .

[68]  Daniel Cariolle,et al.  A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations , 2007 .

[69]  Henk Eskes,et al.  The Assimilation of Envisat data (ASSET) project , 2006 .

[70]  Itsushi Uno,et al.  Adjoint inverse modeling of CO emissions over Eastern Asia using four-dimensional variational data assimilation , 2006 .

[71]  Richard G. Derwent,et al.  Multimodel simulations of carbon monoxide: Comparison with observations and projected near‐future changes , 2006 .

[72]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[73]  R. Martin,et al.  Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000 , 2006 .

[74]  Pawan K. Bhartia,et al.  Science objectives of the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[75]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[77]  Richard Swinbank,et al.  Assimilation of stratospheric ozone from MIPAS into a global general‐circulation model: The September 2002 vortex split , 2006 .

[78]  M. Buchwitz,et al.  Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH 4 , CO 2 and N 2 O , 2005 .

[79]  M. Michou,et al.  Measured and modeled dry deposition velocities over the ESCOMPTE area , 2005 .

[80]  Merritt N. Deeter,et al.  Assimilation of the 2000–2001 CO MOPITT retrievals with optimized surface emissions , 2004 .

[81]  Elías Hólm,et al.  Ozone assimilation in the ERA‐40 reanalysis project , 2004 .

[82]  Arnold Heemink,et al.  Data assimilation of ground-level ozone in Europe with a Kalman filter and chemistry transport model , 2004 .

[83]  M. Fisher Generalized Frames on the Sphere, with Application to Background Error Covariance Modelling , 2004 .

[84]  M. Kiefer,et al.  Retrieval of temperature and tangent altitude pointing from limb emission spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) , 2003 .

[85]  Jean-Pierre Cammas,et al.  c ○ European Geosciences Union 2003 Atmospheric Chemistry and Physics Discussions , 2003 .

[86]  Henk Eskes,et al.  Assimilation of GOME total‐ozone satellite observations in a three‐dimensional tracer‐transport model , 2003 .

[87]  Henk Eskes,et al.  Global ozone forecasting based on ERS-2 GOME observations , 2002 .

[88]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[89]  John P. Burrows,et al.  TROPOSPHERIC NO2 FROM GOME MEASUREMENTS , 2002 .

[90]  J. Burrows,et al.  TROPOSPHERIC NO 2 FROM GOME MEASUREMENTS , 2002 .

[91]  D. Jacob,et al.  Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields , 2001 .

[92]  D. Fonteyn,et al.  Four‐dimensional variational chemical assimilation of CRISTA stratospheric measurements , 2001 .

[93]  Hendrik Elbern,et al.  Ozone episode analysis by four-dimensional variational chemistry data assimilation , 2001 .

[94]  John C. Gille,et al.  Assimilation of satellite observations of long-lived chemical species in global chemistry transport models , 2000 .

[95]  O. Talagrand,et al.  4D-variational data assimilation with an adjoint air quality model for emission analysis , 2000, Environ. Model. Softw..

[96]  Peter M. Lyster,et al.  Assimilation of Stratospheric Chemical Tracer Observations Using a Kalman Filter. Part I: Formulation , 2000 .

[97]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[98]  John C. Gille,et al.  Assimilation of Measurement of Air Pollution from Space (MAPS) CO in a global three‐dimensional model , 1999 .

[99]  Hauke Schmidt,et al.  A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling , 1999 .

[100]  Heikki Järvinen,et al.  Variational quality control , 1999 .

[101]  John A. Pyle,et al.  Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview , 1998 .

[102]  W. Steinbrecht,et al.  New Pump Correction for the Brewer–Mast Ozone Sonde: Determination from Experiment and Instrument Intercomparisons , 1998 .

[103]  Hendrik Elbern,et al.  Variational data assimilation for tropospheric chemistry modeling , 1997 .

[104]  Lawrence E. Flynn,et al.  Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique , 1996 .

[105]  David J. Lary,et al.  Lagrangian four‐dimensional variational data assimilation of chemical species , 1995 .

[106]  Robert A. Barnes,et al.  Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989 , 1995 .

[107]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[108]  S. Oltmans,et al.  Surface ozone measurements from a global network , 1994 .

[109]  J. Mahfouf,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. II: Experimental results with improved physics , 2022 .