Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena

[1]  Chad M. Landis,et al.  Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .

[2]  Herbert Balke,et al.  On the local and average energy release in polarization switching phenomena , 2001 .

[3]  A. Froehlich Mikromechanisches Modell zur Ermittlung effektiver Materialeigenschaften von piezoelektrischen Polykristallen , 2001 .

[4]  D. Munz,et al.  On a non-linear finite element method for piezoelectric structures made of hysteretic ferroelectric ceramics , 2000 .

[5]  D. Munz,et al.  Polarization measurements on PZT under transverse tensile loading , 2000 .

[6]  Angelika Brueckner-Foit,et al.  Effective properties of piezoelectric polycrystals , 2000, Smart Structures.

[7]  Gregory P. Carman,et al.  Nonlinear behavior of polycrystalline piezoceramics , 2000, Smart Structures.

[8]  Nesbitt W. Hagood,et al.  Analysis of deformable electroelastic devices: cumulative effects of weak electric conduction , 2000, Smart Structures.

[9]  Hannes Kessler,et al.  Modeling of stable and unstable polarization switching , 2000, Smart Structures.

[10]  Wei Chen,et al.  Multiaxial constitutive behavior of ferroelectric materials , 2000, Smart Structures.

[11]  Devendra P. Garg,et al.  Research in active composite materials and structures: an overview , 2000, Smart Structures.

[12]  Karl Lubitz,et al.  Piezoceramic multilayer actuators for fuel injection systems in automotive area , 2000, Smart Structures.

[13]  Norman A. Fleck,et al.  Multiaxial models and experiments with ferroelectrics , 2000, Smart Structures.

[14]  T. Michelitsch,et al.  Inclusions and inhomogeneities in electroelastic media with hexagonal symmetry , 2000 .

[15]  Stephen C. Hwang,et al.  Finite element model of ferroelectric/ferroelastic polycrystals , 2000, Smart Structures.

[16]  Stamatis Alatsathianos Experimentelle Untersuchung des Materialverhaltens von piezoelektrischen Werkstoffen , 2000 .

[17]  Weber,et al.  Experimente zum Zeitverhalten von Piezokeramiken , 2000 .

[18]  Christopher S. Lynch,et al.  NONLINEAR CONSTITUTIVE BEHAVIOR OF SOFT AND HARD PZT: EXPERIMENTS AND MODELING , 1999 .

[19]  C. Lynch,et al.  Finite element analysis of cracks in ferroelectric ceramic materials , 1999 .

[20]  Robert M. McMeeking,et al.  A phenomenological constitutive law for the behaviour of ferroelectric ceramics , 1999 .

[21]  Stephen C. Hwang,et al.  A finite element model of ferroelastic polycrystals , 1999 .

[22]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[23]  Theo Fett,et al.  Determination of Room-temperature Tensile Creep of PZT , 1998 .

[24]  Wei Chen,et al.  A micro-electro-mechanical model for polarization switching of ferroelectric materials , 1998 .

[25]  Thomas M. Michelitsch,et al.  A simple model for the nonlinear material behavior of ferroelectrics , 1998 .

[26]  Gregory P. Carman,et al.  Modeling of polarization switching in piezoceramics , 1998, Smart Structures.

[27]  Norman A. Fleck,et al.  The simulation of switching in polycrystalline ferroelectric ceramics , 1998 .

[28]  Christopher S. Lynch,et al.  On the Development of Multiaxial Phenomenological Constitutive Laws for Ferroelectric Ceramics , 1998 .

[29]  Wei Chen,et al.  A Model for Simulating Polarization Switching and AF-F Phase Changes in Ferroelectric Ceramics , 1998 .

[30]  Q. Jiang,et al.  Modeling of domain switching in ferroelectric ceramics : An example , 1998 .

[31]  Stephen C. Hwang,et al.  The prediction of switching in polycrystalline ferroelectric ceramics , 1998 .

[32]  Stephen C. Hwang,et al.  A finite element model of ferroelectric polycrystals , 1998 .

[33]  C. Sun,et al.  Domain switching induced stresses at the tip of a crack in piezoceramics , 1998 .

[34]  Stephen C. Hwang,et al.  On the potential energy of a piezoelectric inclusion and the criterion for ferroelectric switching , 1997 .

[35]  Yongzhong Huo,et al.  Modeling of domain switching in polycrystalline ferroelectric ceramics , 1997 .

[36]  Nesbitt W. Hagood,et al.  Hybrid finite element model for phase transitions in nonlinear electromechanically coupled material , 1997, Smart Structures.

[37]  Thomas Michelitsch,et al.  Calculation of the electroelastic Green’s function of the hexagonal infinite medium , 1997, 1503.03086.

[38]  D. Munz,et al.  Macroscopic description of the non-linear electro-mechanical coupling in ferroelectrics , 1997 .

[39]  Yongqiang Wang Numerical simulation on fatigue behavior of ferroelectric ceramics , 1997 .

[40]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[41]  Zhigang Suo,et al.  Reliability of ceramic multilayer actuators : A nonlinear finite element simulation , 1996 .

[42]  C. Hom,et al.  A finite element method for electrostrictive ceramic devices , 1996 .

[43]  C. Hom,et al.  A numerical analysis of relaxor ferroelectric multilayered actuators and 2-2 composite arrays , 1995 .

[44]  L. E. Cross,et al.  Ferroelectric Materials for Electromechanical Transducer Applications , 1995 .

[45]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[46]  K. Bathe,et al.  An Iterative Finite Element Procedure for the Analysis of Piezoelectric Continua , 1995 .

[47]  C. S. Lynch,et al.  Crack Growth in Ferroelectric Ceramics Driven by Cyclic Polarization Switching , 1995 .

[48]  Natarajan Shankar,et al.  A Fully Coupled Constitutive Model for Electrostrictive Ceramic Materials , 1994 .

[49]  R. McMeeking,et al.  Finite strain ferroelectric constitutive laws , 1994 .

[50]  Zhigang Suo,et al.  Cracking in ceramic actuators caused by electrostriction , 1994 .

[51]  X. Gong Stresses Near the End of an Internal Electrode in Multilayer Electrostrictive Ceramic Actuators , 1994 .

[52]  P. Haupt,et al.  On the mathematical modelling of material behavior in continuum mechanics , 1993 .

[53]  Anthony G. Evans,et al.  Nonlinear Deformation of Ferroelectric Ceramics , 1993 .

[54]  Kenji Uchino,et al.  Ceramic Actuators: Principles and Applications , 1993 .

[55]  L. Eric Cross,et al.  Ferroelectric Ceramics: Tailoring Properties for Specific Applications , 1993 .

[56]  G. Maugin Non-Equilibrium Thermodynamics of Electromagnetic Solids , 1993 .

[57]  P. Haupt Foundation of Continuum Mechanics , 1993 .

[58]  G. Maugin Nonlinear electromechanical couplings , 1992 .

[59]  G. Arlt,et al.  Internal bias in acceptor‐doped BaTiO3 ceramics: Numerical evaluation of increase and decrease , 1990 .

[60]  G. Arlt Twinning in ferroelectric and ferroelastic ceramics: stress relief , 1990 .

[61]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[62]  Gérard A. Maugin,et al.  Electrodynamics of Continua I: Foundations and Solid Media , 1989 .

[63]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[64]  G. Maugin Coupled Magnetomechanical and Electromechanical Hysteresis Effects , 1989 .

[65]  V. Z. Parton,et al.  Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids , 1988 .

[66]  E. Krempl,et al.  Models of viscoplasticity some comments on equilibrium (back) stress and drag stress , 1987 .

[67]  K. Lubitz,et al.  Comparison of Piezoelectric Constants of PZT Ceramics with Values Calculated from Electrostrictive Coefficients , 1985 .

[68]  T. J. Tucker,et al.  Determination of the polar equilibrium properties of the ferroelectric ceramic PZT 65/35 , 1981 .

[69]  T. J. Tucker,et al.  One dimensional polar mechanical and dielectric responses of the ferroelectric ceramic PZT 65/35 due to domain switching , 1981 .

[70]  Peter J. Chen Three dimensional dynamic electromechanical constitutive relations for ferroelectric materials , 1980 .

[71]  Chen PeterJ.,et al.  A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity , 1980 .

[72]  Thomas R. Shrout,et al.  Piezoelectric properties of internally electroded PZT multilayers , 1980 .

[73]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[74]  J. Jackson,et al.  Classical Electrodynamics, 2nd Edition , 1975 .

[75]  H. F. Tiersten,et al.  On the nonlinear equations of thermo-electroelasticity , 1971 .

[76]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[77]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[78]  Henry M. Otte,et al.  Crystal symmetry and physical properties. , 1966 .

[79]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[80]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[81]  A. Cemal Eringen,et al.  On the foundations of electroelastostatics , 1963 .

[82]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[83]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[84]  R. Toupin The Elastic Dielectric , 1956 .