Defective porphyrin-based metal-organic framework nanosheets derived from V2CTx MXene as a robust bioplatform for impedimetric aptasensing 17β-estradiol.

[1]  Linbing Sun,et al.  Modulating the Activity of Enzyme in Metal-Organic Frameworks Using the Photothermal Effect of Ti3C2 Nanosheets. , 2022, ACS applied materials & interfaces.

[2]  Yisong Zhao,et al.  Ternary heterostructures of 1D/2D/2D CuCo2S4/CuS/Ti3C2 MXene: Boosted amperometric sensing for chlorpyrifos. , 2022, Journal of hazardous materials.

[3]  H. Sheen,et al.  Electrochemical biosensor with electrokinetics-assisted molecular trapping for enhancing C-reactive protein detection. , 2022, Biosensors & bioelectronics.

[4]  N. Jaffrezic‐Renault,et al.  Electrochemical aptasensor based on electrodeposited poly(3,4-ethylenedioxythiophene)-graphene oxide coupled with Au@Pt nanocrystals for the detection of 17β-estradiol , 2022, Microchimica Acta.

[5]  Adel Mohammed Al-Dhahebi,et al.  Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. , 2022, Food chemistry.

[6]  Hongje Jang,et al.  Rapid electrochemical dual-target biosensor composed of an Aptamer/MXene hybrid on Au microgap electrodes for cytokines detection. , 2022, Biosensors & bioelectronics.

[7]  Ai-Jun Wang,et al.  A signal-off photoelectrochemical aptasensor for ultrasensitive 17β-estradiol detection based on rose-like CdS@C nanostructure and enzymatic amplification , 2022, Microchimica Acta.

[8]  Kalim Deshmukh,et al.  MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives , 2022, Coordination Chemistry Reviews.

[9]  Xiaojiao Du,et al.  Ultrasensitive near-infrared aptasensor for enrofloxacin detection based on wavelength tunable AgBr nanocrystals electrochemiluminescence emission triggered by O-terminated Ti3C2 MXene. , 2021, Biosensors & bioelectronics.

[10]  M. Otyepka,et al.  Emerging MXene@Metal-Organic Framework Hybrids: Design Strategies toward Versatile Applications. , 2021, ACS nano.

[11]  Xiliang Luo,et al.  Nanosheets-assembled hollow CdIn2S4 microspheres-based photoelectrochemical and fluorescent dual-mode aptasensor for highly sensitive assay of 17β-estradiol based on magnetic separation and enzyme catalytic amplification , 2021 .

[12]  Hongbin Pu,et al.  A fluorescence aptasensor based on carbon quantum dots and magnetic Fe3O4 nanoparticles for highly sensitive detection of 17β-estradiol. , 2021, Food chemistry.

[13]  Minghua Wang,et al.  Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants , 2021, Trends in Food Science & Technology.

[14]  Qi Wang,et al.  Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. , 2021, Biomaterials science.

[15]  Minghua Wang,et al.  A new strategy for the development of efficient impedimetric tobramycin aptasensors with metallo-covalent organic frameworks (MCOFs). , 2021, Food chemistry.

[16]  K. Liao,et al.  Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications , 2021, npj 2D Materials and Applications.

[17]  C. Ferrara,et al.  Ti3C2Tx MXene compounds for electrochemical energy storage , 2021 .

[18]  J. Myoung,et al.  Sensing with MXenes: Progress and Prospects , 2021, Advanced materials.

[19]  Maotian Xu,et al.  Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. , 2021, Biosensors & bioelectronics.

[20]  Shaobin Wang,et al.  An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery , 2021 .

[21]  Shuming Yang,et al.  Truncated affinity-improved aptamers for 17β-estradiol determination by AuNPs-based colorimetric aptasensor. , 2020, Food Chemistry.

[22]  Haifeng Sha,et al.  Design of a ratiometric fluorescence sensor based on metal organic frameworks and Ru(bpy)32+-doped silica composites for 17β-Estradiol detection. , 2020, Journal of colloid and interface science.

[23]  Minghua Wang,et al.  Bimetallic MnCo oxide nanohybrids prepared from Prussian blue analogue for application as impedimetric aptasensor carrier to detect myoglobin , 2020 .

[24]  C. Hecer,et al.  Hormones and Hormonal Anabolics: Residues in Animal Source Food, Potential Public Health Impacts, and Methods of Analysis , 2020 .

[25]  M.Z.H. Khan,et al.  Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art , 2020, Biosensors and Bioelectronics.

[26]  K. Atacan,et al.  Design of a new electrochemical sensing system based on MoS2–TiO2/reduced graphene oxide nanocomposite for the detection of paracetamol , 2020 .

[27]  Minghua Wang,et al.  Zirconium-porphyrin complex as novel nanocarrier for label-free impedimetric biosensing neuron-specific enolase , 2020, Sensors and Actuators B: Chemical.

[28]  K. Yan,et al.  A Ratiometric Self-Powered Sensor for 17β-Estradiol Detection Based on Dual-Channel Photocatalytic Fuel Cell. , 2020, Analytical chemistry.

[29]  Minghua Wang,et al.  PEGMA-modified bimetallic NiCo Prussian blue analogue doped with Tb(III) ions: Efficiently pH-responsive and controlled release system for anticancer drug , 2020, Chemical Engineering Journal.

[30]  M. Du,et al.  A bimetallic CoNi-based metal−organic framework as efficient platform for label-free impedimetric sensing toward hazardous substances , 2020 .

[31]  Minghua Wang,et al.  Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155 , 2020 .

[32]  Fengli Qu,et al.  Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. , 2020, Journal of hazardous materials.

[33]  Xiang Ren,et al.  A self-powered photoelectrochemical cathodic aptasensor for the detection of 17β-estradiol based on FeOOH/In2S3 photoanode. , 2020, Biosensors & bioelectronics.

[34]  D. Mayer,et al.  LSPR-based colorimetric immunosensor for rapid and sensitive 17β-estradiol detection in tap water , 2020 .

[35]  K. Atacan,et al.  An Ag–TiO2–reduced graphene oxide hybrid film for electrochemical detection of 8-hydroxy-2′-deoxyguanosine as an oxidative DNA damage biomarker , 2020 .

[36]  Guang Chen,et al.  Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: recent advances in catalyst development and performance improvement , 2020 .

[37]  V. Roddatis,et al.  MXene Derived Metal-Organic Frameworks. , 2019, Journal of the American Chemical Society.

[38]  Xinxia Cai,et al.  A Folding Paper-Based Aptasensor Platform Coated with Novel nanoassemblies for Instant and Highly Sensitive Detection of 17β-Estradiol. , 2019, ACS sensors.

[39]  Xi Cao,et al.  MIL-100(Fe)/Ti3C2 MXene as a Schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities. , 2019, ACS applied materials & interfaces.

[40]  Menglong Wang,et al.  A nanowell-based molecularly imprinted electrochemical sensor for highly sensitive and selective detection of 17β-estradiol in food samples. , 2019, Food chemistry.

[41]  F. Long,et al.  Reusable chemiluminescent fiber optic aptasensor for the determination of 17β-estradiol in water samples , 2019, Microchimica Acta.

[42]  T. Noguer,et al.  Salen/salan metallic complexes as redox labels for electrochemical aptasensors. , 2019, Chemical communications.

[43]  J. Chen,et al.  Nanoporous Gold Embedded ZIF Composite for Enhanced Electrochemical Nitrogen Fixation. , 2019, Angewandte Chemie.

[44]  K. Atacan CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for ʟ-cysteine detection , 2019, Journal of Alloys and Compounds.

[45]  Jing Sun,et al.  An innovative immunochromatography assay for highly sensitive detection of 17β-estradiol based on an indirect probe strategy , 2019, Sensors and Actuators B: Chemical.

[46]  Siyao Liu,et al.  Group-Targeting Detection of Total Steroid Estrogen Using Surface-Enhanced Raman Spectroscopy. , 2019, Analytical chemistry.

[47]  Haowen Huang,et al.  Aptamer based ratiometric electrochemical sensing of 17β-estradiol using an electrode modified with gold nanoparticles, thionine, and multiwalled carbon nanotubes , 2019, Microchimica Acta.

[48]  Guoqiang Wang,et al.  A simple and highly selective electrochemical label-free aptasensor of 17β-estradiol based on signal amplification of bi-functional graphene. , 2019, Talanta.

[49]  Magnus Willander,et al.  Nanoimmunosensor based on ZnO nanorods for ultrasensitive detection of 17β-Estradiol. , 2019, Biosensors & bioelectronics.

[50]  D. Pan,et al.  Determination of 17β-estradiol by surface-enhanced Raman spectroscopy merged with hybridization chain reaction amplification on Au@Ag core-shell nanoparticles , 2019, Microchimica Acta.

[51]  Yang Liu,et al.  Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water , 2018, Electrochimica Acta.

[52]  R. B. Rakhi,et al.  Electrochemical Determination of Adrenaline Using MXene/Graphite Composite Paste Electrodes. , 2018, ACS applied materials & interfaces.

[53]  P. Zeng,et al.  Fabrication of molecularly imprinted polypyrrole /Ru@ethyl-SiO2 nanocomposite for the ultrasensitive electrochemiluminescence sensing of 17β-Estradiol , 2018, Electrochimica Acta.

[54]  Yang Wang,et al.  Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. , 2018, Biosensors & bioelectronics.

[55]  Vinay Sharma,et al.  Electrochemical Aptasensors for Food and Environmental Safeguarding: A Review , 2018, Biosensors.

[56]  Y. Gogotsi,et al.  Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate , 2017 .

[57]  H. Ju,et al.  TiO2-BiVO4 Heterostructure to Enhance Photoelectrochemical Efficiency for Sensitive Aptasensing. , 2017, ACS applied materials & interfaces.

[58]  F. T. Moreira,et al.  Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. , 2016, Biosensors & bioelectronics.

[59]  Tianming Yao,et al.  A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17β-estradiol detection. , 2016, Biosensors & bioelectronics.

[60]  Jadranka Travas-Sejdic,et al.  Label-free electrochemical aptasensor for femtomolar detection of 17β-estradiol. , 2015, Biosensors & bioelectronics.

[61]  Guohua Zhao,et al.  A simple and label-free aptasensor based on nickel hexacyanoferrate nanoparticles as signal probe for highly sensitive detection of 17β-estradiol. , 2015, Biosensors & bioelectronics.

[62]  Shuming Yang,et al.  Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles , 2014, Scientific Reports.

[63]  A. Kouzani,et al.  Aptasensors: a review. , 2010, Journal of biomedical nanotechnology.

[64]  G. S. Wilson,et al.  Electrochemical Biosensors: Recommended Definitions and Classification , 1999, Biosensors & bioelectronics.