Glacial landsystems of Satujökull, Iceland: A modern analogue for glacial landsystem overprinting by mountain icecaps

Mapping of the surficial geology and geomorphology of the Satujokull foreland of the northern Hofsjokull ice cap in central Iceland provides a clear signature of glacial landsystem overprinting as a result of complex glacier behaviour during the historical period. Landsystem 1 comprises a wide arc of ice-cored moraine and controlled ridges lying outside fluted and drumlinized terrain, and is indicative of polythermal conditions. This landform assemblage commonly marks the historical Little Ice Age maximum limit on the forelands of upland icefields in the arid interior of Iceland and is therefore a record of climatically driven glacier advance. Landsystem 2 contains most of the diagnostic criteria for the surging glacier landsystem and records two separate surges by the western margin of Satujokull in the period since the attainment of the Little Ice Age maximum advance. The occurrence of Landsystem 2 is significant because Satujokull has not been previously regarded as a surging glacier, even though other outlets of Hofsjokull are prone to surging. Landsystem overprinting, especially in response to changing thermal regimes and/or glacier dynamics, and particularly by different flow units in the same glacier, is rarely reported but is crucial to the critical application of modern landsystem analogues to Quaternary palaeoglaciological reconstruction.

[1]  R. Alley,et al.  Glaciohydraulic supercooling in former ice sheets , 2006 .

[2]  David J. A. Evans,et al.  Glacial Geomorphology at Glasgow , 2009 .

[3]  C. Clark,et al.  Landform and sediment imprints of fast glacier flow in the southwest Laurentide Ice Sheet , 2008 .

[4]  Douglas I. Benn,et al.  Fluted moraine formation and till genesis below a temperate valley glacier: Slettmarkbreen, Jotunheimen, southern Norway , 1994 .

[5]  N. Glasser,et al.  Debris entrainment and transfer in polythermal valley glaciers , 1999, Journal of Glaciology.

[6]  Brice R. Rea Plateau Icefield Landsystem , 2007 .

[7]  David J. A. Evans,et al.  Controlled moraines: origins, characteristics and palaeoglaciological implications , 2009 .

[8]  K. Kjær,et al.  Impact of multiple glacier surges—a geomorphological map from Brúarjökull, East Iceland , 2008 .

[9]  M. Sharp “Crevasse-Fill” Ridges—A Landform Type Characteristic of Surging Glaciers? , 1985 .

[10]  K. Kjær,et al.  The final phase of dead‐ice moraine development: processes and sediment architecture, Kötlujökull, Iceland , 2001 .

[11]  David J. A. Evans,et al.  Coire a’ Cheud‐chnoic, the ‘hummocky moraine’ of Glen Torridon , 2000 .

[12]  A. Dyke Landscapes of cold-centred Late Wisconsinan ice caps, Arctic Canada , 1993 .

[13]  R. Hooke Structure and Flow in the Margin of the Barnes Ice Cap, Baffin Island, N.W.T., Canada , 1973, Journal of Glaciology.

[14]  K. Kjær,et al.  De-icing progression of ice-cored moraines in a humid, subpolar climate, Kötlujökull, Iceland , 2000 .

[15]  N. Golledge An ice cap landsystem for palaeoglaciological reconstructions: characterizing the Younger Dryas in western Scotland , 2007 .

[16]  A. Dugmore,et al.  Two millennia of glacier advances from southern Iceland dated by tephrochronology , 2008, Quaternary Research.

[17]  David J. A. Evans,et al.  Surging glacier landsystem of Tungnaárjökull, Iceland , 2009 .

[18]  David J. A. Evans 5. The glacier-marginal landsystems of Iceland , 2005 .

[19]  David J. A. Evans,et al.  Satujökull glacial landsystem, Iceland , 2010 .

[20]  David J. A. Evans,et al.  Surficial geology and geomorphology of the Brúarjökull surging glacier landsystem , 2007 .

[21]  G. Boulton On the Origin and Transport of Englacial Debris in Svalbard Glaciers , 1970, Journal of Glaciology.

[22]  David J. A. Evans,et al.  Till deposition by glacier submarginal, incremental thickening , 2005 .

[23]  M. Sharp,et al.  Sedimentation and Stratigraphy at Eyjabakkajökull—An Icelandic Surging Glacier , 1985, Quaternary Research.

[24]  Ó. Knudsen,et al.  Iceland: modern processes and past environments , 2005 .

[25]  David J. A. Evans,et al.  Geomorphology and sedimentology of surging glaciers: a land-systems approach , 1999, Annals of Glaciology.

[26]  D. Mickelson,et al.  Modeling the deglaciation of the Green Bay Lobe of the southern Laurentide Ice Sheet , 2004 .

[27]  R. Hooke Flow near the Margin of the Barnes Ice Cap, and the Development of Ice-Cored Moraines , 1973 .

[28]  David J. A. Evans,et al.  Glaciers and Glaciation , 1997 .

[29]  J. Krüger Moraine ridges formed from subglacial frozen‐on sediment slabs and their differentiation from push moraines , 2008 .

[30]  H. Mooers A glacial-process model: The role of spatial and temporal variations in glacier thermal regime , 1990 .

[31]  W. B. Whalley,et al.  Plateau icefields: Geomorphology and dynamics , 1998 .

[32]  David J. A. Evans,et al.  The active temperate glacial landsystem: a model based on Breiðamerkurjökull and Fjallsjökull, Iceland , 2002 .

[33]  R. Lunn,et al.  Subglacial drainage by groundwater channel coupling, and the origin of esker systems: part II—theory and simulation of a modern system , 2007 .

[34]  A. K. Hansel,et al.  Wisconsin Episode glacial landscape of central Illinois: A product of subglacial deformation processes? , 1999 .

[35]  K. Kjær,et al.  Instantaneous end moraine and sediment wedge formation during the 1890 glacier surge of Brúarjökull, Iceland , 2008 .

[36]  L. Andrzejewski The impact of surges on the ice-marginal landsystem of Tungnaárjökull, Iceland , 2002 .

[37]  Neil F. Glasser,et al.  Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes , 2001, Journal of the Geological Society.

[38]  Helgi Björnsson,et al.  Surges of glaciers in Iceland , 2003, Annals of Glaciology.

[39]  R. J. Price Moraines, Sandar, Kames and Eskers near Breidamerkurjökull, Iceland@@@Moraines, Sandar, Kames and Eskers near Breidamerkurjokull, Iceland , 1969 .

[40]  David J. A. Evans,et al.  Quantifying climate and glacier mass balance in north Norway during the Younger Dryas , 2007 .

[41]  David J. A. Evans,et al.  Controlled moraine development and debris transport pathways in polythermal plateau icefields: examples from Tungnafellsjökull, Iceland , 2010 .

[42]  K. Kjær,et al.  Ice‐cored drumlins at the surge‐type glacier Brúarjökull, Iceland: a transitional‐state landform , 2006 .

[43]  G. Boulton Push-moraines and glacier-contact fans in marine and terrestrial environments , 1986 .

[44]  W. B. Whalley,et al.  Geomorphology and style of plateau icefield deglaciation in fjord terrains: the example of Troms‐Finnmark, north Norway , 2002 .

[45]  J. Krüger Origin, chronology and climatological significance of annual-moraine ridges at Myrdalsjökull, Iceland , 1995 .

[46]  J. Krüger Moraine‐ridge formation along a stationary ice front in Iceland , 2008 .

[47]  David J. A. Evans,et al.  A critical assessment of subglacial mega-floods: a case study of glacial sediments and landforms in south-central Alberta, Canada , 2006 .

[48]  P. Carbonneau,et al.  Evolution of a debris-charged glacier landsystem, Kvíárjökull, Iceland , 2010 .

[49]  L. Owen,et al.  Glaciated valley landsystems , 2003 .

[50]  K. Kjær,et al.  Origin and de‐icing of multiple generations of ice‐cored moraines at Brúarjökull, Iceland , 2007 .

[51]  Tavi Murray,et al.  Controls on the distribution of surge-type glaciers in Svalbard , 2000, Journal of Glaciology.

[52]  K. Briffa,et al.  The ‘little ice age’: re‐evaluation of an evolving concept , 2005 .

[53]  David J. A. Evans,et al.  Surficial geology and geomorphology of the þórisjökull plateau icefield, west-central Iceland , 2006 .

[54]  David J. A. Evans,et al.  Glacial landsystems of the southwest Laurentide Ice Sheet: modern Icelandic analogues , 1999 .

[55]  David J. A. Evans,et al.  Sediments and landforms at Kvı́árjökull, southeast Iceland: a reappraisal of the glaciated valley landsystem , 2002 .

[56]  G. Glückert Tills and related deposits , 2008 .

[57]  Ó. Knudsen,et al.  Glaciohydraulic supercooling in Iceland , 2002 .

[58]  R. Lunn,et al.  Subglacial drainage by groundwater-channel coupling, and the origin of esker systems: part 1 - glaciological observations , 2007 .