Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix

Single crystal Al2O3 substrates have been implanted with 160-keV Au+ to a dose of 0.6 × 1017 or 1.0 × 1017 cm−2, with a postimplantation annealing for 1 h at 800°C in air. The obtained composite layers were studied by the method of linear optical reflection; the nonlinear optical characteristics were determined by the RZ-scan technique using picosecond radiation pulses of an Nd:YAG laser operating at 1064 nm. The appearance of a characteristic surface optical plasmon resonance band in the linear reflection spectra was indicative of the formation of gold nanoparticles in a subsurface layer of ion-irradiated Al2O3. It is shown that the synthesized particles are responsible for the observed manifestations of nonlinear refraction. The composite layers were characterized by the nonlinear refractive index (n2) and the real part of the third-order nonlinear susceptibility (Reϰ (3)).