Different regimes of low-frequency fluctuations in vertical-cavity surface-emitting lasers

We show that vertical-cavity surface-emitting lasers (VCSEL) subject to a polarization preserving optical feedback from a long external cavity may exhibit two different types of low-frequency fluctuations (LFF) regime. In both types, the total intensity shows random drops and then recovers gradually to its original value. But the two LFF types are clearly distinguished by the behavior of the x- and y-linearly polarized (LP) modes. Type I LFF is characterized by the fact that the x- and y-LP modes compete with nearly equal power, while type II LFF is characterized by intensity dropouts in the dominant polarization mode and intensity bursts in the depressed mode. We analyze the parameter regions in which these different LFF occur and characterize them further. Our numerical results suggest that a transition from one LFF type to the other may be experimentally observed by modifying the frequency difference and/or the gain-to-loss ratio of the two LP modes. The LFF we present is an example of vectorial chaos, which may be of use for multichannel secure communication systems using chaotic light.

[1]  K. Choquette,et al.  Temperature dependence of gain‐guided vertical‐cavity surface emitting laser polarization , 1994 .

[2]  Pascal Besnard,et al.  THEORETICAL MODELING OF VERTICAL-CAVITY SURFACE-EMITTING LASERS WITH POLARIZED OPTICAL FEEDBACK , 1997 .

[3]  Y. Chung,et al.  Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback , 1991, IEEE Photonics Technology Letters.

[4]  Athanasios Gavrielides,et al.  Bifurcation Cascade in a Semiconductor Laser Subject to Optical Feedback , 1999 .

[5]  M Sciamanna,et al.  Bifurcation to polarization self-modulation in vertical-cavity surface-emitting lasers. , 2002, Optics letters.

[6]  Patrice Mégret,et al.  Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers , 2002 .

[7]  Pascal Besnard,et al.  Polarization modulation dynamics of vertical-cavity surface-emitting lasers with an extended cavity , 1997 .

[8]  Thomas Erneux,et al.  Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback , 2002 .

[9]  Pascal Besnard,et al.  Switching between polarized modes of a vertical-cavity surface-emitting laser by isotropic optical feedback , 1999 .

[10]  Cristina Masoller,et al.  Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback , 1999 .

[11]  Bob Nagler,et al.  Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers , 2002 .

[12]  Daniel J. Gauthier,et al.  Statistics of power-dropout events in semiconductor lasers with time-delayed optical feedback , 1997 .

[13]  Effect of strong optical feedback on vertical-cavity surface-emitting lasers , 1998, IEEE Photonics Technology Letters.

[14]  J. P. Harbison,et al.  Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers , 1991 .

[15]  Kent D. Choquette,et al.  Stable polarization self-modulation in vertical-cavity surface-emitting lasers , 1998 .

[16]  Govind P. Agrawal,et al.  Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers , 1997 .

[17]  Hitoshi Kawaguchi,et al.  Bistabilities and Nonlinearities in Laser Diodes , 1994 .

[18]  Hugo Thienpont,et al.  Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers , 2000 .

[19]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  J. Hudgings,et al.  Coherence collapse and redshifting in vertical-cavity surface-emitting lasers exposed to strong optical feedback , 2001 .

[21]  Neal B. Abraham,et al.  Polarization properties of vertical-cavity surface-emitting lasers , 1997 .

[22]  Cristina Masoller,et al.  Polarization dynamics in vertical-cavity surface-emitting lasers with optical feedback through a quarter-wave plate , 1999 .

[23]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[24]  Cristina Masoller,et al.  Transverse-mode dynamics in vertical-cavity surface-emitting lasers with optical feedback , 2002 .

[25]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[26]  Mario Dagenais,et al.  High‐frequency polarization self‐modulation in vertical‐cavity surface‐emitting lasers , 1993 .

[27]  P Mandel,et al.  Low frequency fluctuations in a multimode semiconductor laser with optical feedback. , 2000, Physical review letters.

[28]  M Sciamanna,et al.  Bifurcation to polarization self-modulation in vertical-cavity surface-emitting lasers: errata. , 2002, Optics letters.

[29]  H. Thienpont,et al.  Polarization switching in VCSEL's due to thermal lensing , 1998, IEEE Photonics Technology Letters.

[30]  K. Shore,et al.  TRANSVERSE MODE SELECTION AND NOISE PROPERTIES OF EXTERNAL CAVITY VCSELs INCLUDING MULTIPLE REFLECTI , 1999 .

[31]  S. F. Yu Polarization Properties of Vertical Cavity Surface Emitting Lasers , 2005 .

[32]  Ingo Fischer,et al.  Emission dynamics of semiconductor lasers subject to delayed optical feedback: An experimentalist’s perspective , 2001 .

[33]  San Miguel M,et al.  Light-polarization dynamics in surface-emitting semiconductor lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[34]  Rajarshi Roy,et al.  Communication with dynamically fluctuating states of light polarization. , 2002, Physical review letters.