A New Carbon Allotrope with Six-Fold Helical Chains in all-sp2 Bonding Networks

Using a recently developed approach to constructing covalent network structures from linear carbyne, we identify by ab initio calculations a new carbon allotrope in () symmetry that comprises six-fold helical chains with alternating sp2-type single and double bonds along the chains that are connected via zigzag benzene rings. This 6-fold carbene is characterized as a three-dimensional three-connected chiral crystalline modification of graphite. Phonon and electronic band calculations indicate that this new structure is dynamically stable and is a semiconductor with a band gap of 0.47 eV, in contrast to the semimetallic nature of graphite. Simulated x-ray diffraction patterns of the 6-fold carbene provide an excellent match to the previously unexplained distinct diffraction peak of a new carbon allotrope found in recent detonation experiments. These results establish a new carbon phase and offer insights into its outstanding structural and electronic properties.

[1]  Xiaojuan Liu,et al.  Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .

[2]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[3]  D. Pantea,et al.  A morphological investigation of soot produced by the detonation of munitions. , 2006, Chemosphere.

[4]  Y. Kawazoe,et al.  Mechanism for direct conversion of graphite to diamond , 2011 .

[5]  Y. Kawazoe,et al.  Phase conversion from graphite toward a simple monoclinic sp3-carbon allotrope. , 2012, The Journal of chemical physics.

[6]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[7]  Y. Kawazoe,et al.  Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations , 2012 .

[8]  J. Casado,et al.  Raman spectroscopic characterization of some commercially available carbon black materials , 1995 .

[9]  Peter J. Eng,et al.  Bonding Changes in Compressed Superhard Graphite , 2003, Science.

[10]  Hui Wang,et al.  Superhard monoclinic polymorph of carbon. , 2009, Physical review letters.

[11]  Porous media reinforced with carbon soots , 2013 .

[12]  H. Mizuseki,et al.  Kinetic origin of divergent decompression pathways in silicon and germanium. , 2013, Physical Review Letters.

[13]  Y. Kawazoe,et al.  New metallic carbon crystal. , 2009, Physical review letters.

[14]  L. B. Ebert,et al.  X-ray diffraction study of fullerene soot , 1993 .

[15]  P. Loubeyre,et al.  Properties of diamond under hydrostatic pressures up to 140 GPa , 2003, Nature materials.

[16]  Yoshiyuki Kawazoe,et al.  Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. , 2011, Physical review letters.

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  S. Goedecker,et al.  Crystal structure of cold compressed graphite. , 2011, Physical review letters.

[19]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[20]  R. Heimann,et al.  A unified structural approach to linear carbon polytypes , 1983, Nature.

[21]  Peter J. F. Harris,et al.  Fullerene-related structure of commercial glassy carbons , 2004 .

[22]  Kosmas Prassides,et al.  Crystal structure and bonding of ordered C60 , 1991, Nature.

[23]  R. Bilbao,et al.  Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures , 2012 .

[24]  Vladimir L. Kuznetsov,et al.  Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface , 1999 .

[25]  B. Rand,et al.  Gas composition in laser pyrolysis of hydrocarbon-based mixtures: Influence on soot morphology , 2004 .

[26]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[27]  G. S. Yur’ev,et al.  Structure of Detonation Diamond Nanoparticles , 2003 .

[28]  R. Armiento,et al.  Functional designed to include surface effects in self-consistent density functional theory , 2005 .

[29]  J. Maultzsch,et al.  Phonon dispersion in graphite. , 2004, Physical review letters.

[30]  Y. Kawazoe,et al.  New Carbon Allotropes with Helical Chains of Complementary Chirality Connected by Ethene-type π-Conjugation , 2013, Scientific Reports.

[31]  Petr Čársky,et al.  Ab Initio Calculations , 1980 .

[32]  Yoshiyuki Kawazoe,et al.  Low-Temperature Phase Transformation from Graphite to s p 3 Orthorhombic Carbon , 2011 .

[33]  C. Sorensen,et al.  One-step synthesis of graphene via catalyst-free gas-phase hydrocarbon detonation , 2013, Nanotechnology.

[34]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[35]  P. Fang,et al.  Evidence for fullerene in a coal of Yunnan, Southwestern China , 1997 .

[36]  Á. Pérez‐Jiménez,et al.  Electronic transport in molecular nanodevices from ab-initio calculations , 2005 .

[37]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[38]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[39]  F. Huang,et al.  Characterization of the condensed carbon in detonation soot , 2003 .

[40]  A. Chuvilin,et al.  Effect of explosion conditions on the structure of detonation soots: Ultradisperse diamond and onion carbon , 1994 .

[41]  M. Hajaligol,et al.  Characterization of combustion fullerene soot, C60, and mixed fullerene , 2004 .

[42]  Roald Hoffmann,et al.  Hypothetical metallic allotrope of carbon , 1983 .

[43]  T. Iitaka,et al.  Comment on "New metallic carbon crystal". , 2009, Physical review letters.

[44]  K. Hass,et al.  Hypothetical superhard carbon metal , 1990 .

[45]  Wesley A. Chalifoux,et al.  Synthesis of polyynes to model the sp-carbon allotrope carbyne , 2010, Nature Chemistry.

[46]  Graeme Henkelman,et al.  A generalized solid-state nudged elastic band method. , 2012, The Journal of chemical physics.

[47]  R. Bilbao,et al.  Influence of the temperature on the properties of the soot formed from C2H2 pyrolysis , 2007 .

[48]  H. Kroto,et al.  C 60 Buckminsterfullerene , 1990 .

[49]  P. Buseck Geological fullerenes: review and analysis , 2002 .

[50]  H. Kroto,et al.  Space, Stars, C60, and Soot , 1988, Science.